18 resultados para cell differentiation

em University of Queensland eSpace - Australia


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Th2-associated factors such as IL-4 are involved in both the development of Th2 responses (via modulating Th2 cell differentiation) and in the effector phase of Th2 responses (via modulating macrophage activation). The IL-1 receptor-like protein ST2 (T1, Fit-1, or DER4) is expressed as a membrane-bound (ST2L) or secreted form (sST2), and has been clearly implicated as a regulator of both the development and effector phases of Th2-type responses. Here we analyze the mechanisms and therapeutic implications of the unique ability of ST2 to promote development and function of type 2 helper T cells through a positive feedback loop, as well as to act as a negative feedback modulator of macrophage pro-inflammatory function. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Although MYB overexpression in colorectal cancer (CRC) is known to be a prognostic indicator for poor survival, the basis for this overexpression is unclear. Among multiple levels of MYB regulation, the most dynamic is the control of transcriptional elongation by sequences within intron I. The authors have proposed that this regulatory sequence is transcribed into an RNA stem-loop and 19-residue polyuridine tract, and is subject to mutation in CRC. When this region was examined in colorectal and breast carcinoma cell lines and tissues, the authors found frequent mutations only in CRC. It was determined that these mutations allowed increased transcription compared with the wild type sequence. These data suggest that this MYB regulatory region within intron I is subject to mutations in CRC but not breast cancer, perhaps consistent with the mutagenic insult that occurs within the colon and not mammary tissue. In CRC, these mutations may contribute to MYB overexpression, highlighting the importance of noncoding sequences in the regulation of key cancer genes. (c) 2006 Wiley-Liss, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Transcriptional regulatory networks govern cell differentiation and the cellular response to external stimuli. However, mammalian model systems have not yet been accessible for network analysis. Here, we present a genome-wide network analysis of the transcriptional regulation underlying the mouse macrophage response to bacterial lipopolysaccharide (LPS). Key to uncovering the network structure is our combination of time-series cap analysis of gene expression with in silico prediction of transcription factor binding sites. By integrating microarray and qPCR time-series expression data with a promoter analysis, we find dynamic subnetworks that describe how signaling pathways change dynamically during the progress of the macrophage LPS response, thus defining regulatory modules characteristic of the inflammatory response. In particular, our integrative analysis enabled us to suggest novel roles for the transcription factors ATF-3 and NRF-2 during the inflammatory response. We believe that our system approach presented here is applicable to understanding cellular differentiation in higher eukaryotes. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Half of the members of the nuclear receptors superfamily are so-called orphan receptors because the identity of their ligand, if any, is unknown. Because of their important biological roles, the study of orphan receptors has attracted much attention recently and has resulted in rapid advances that have helped in the discovery of novel signaling pathways. In this review we present the main features of orphan receptors, discuss the structure of their ligand-binding domains and their biological functions. The paradoxical existence of a pharmacology of orphan receptors, a rapidly growing and innovative field, is highlighted.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The use of granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral blood as a source of stem cells has resulted in a high incidence of severe chronic graft-versus-host disease (cGVHD), which compromises the outcome of clinical allogeneic stem cell transplantation. We have studied the effect of G-CSF on both immune complex and fibrotic cGVHD directed to major (DBA/2 --> B6D2F1) or minor (B10.D2 --> BALB/c) histocompatibility antigens. In both models, donor pretreatment with G-CSF reduced cGVHD mortality in association with type 2 differentiation. However, after escalation of the donor T-cell dose, scleroderma occurred in 90% of the recipients of grafts from G-CSF-treated donors. In contrast, only 11% of the recipients of control grafts developed scleroderma, and the severity of hepatic cGVHD was also reduced. Mixing studies confirmed that in the presence of high donor T-cell doses, the severity of scleroderma was determined by the non-T-cell fraction of grafts from G-CSF-treated donors. These data confirm that the induction of cGVHD after donor treatment with G-CSF is dependent on the transfer of large numbers of donor T cells in conjunction with a putatively expanded myeloid lineage, providing a further rationale for the limitation of cell dose in allogeneic stem cell transplantation. (C) 2004 American Society for Blood and Marrow Transplantation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Recently, E2F function has expanded to include the regulation of differentiation in human epidermal keratinocytes (HEKs). We extend these findings to report that in HEKs, Sp1 is a differentiation-specific activator and a downstream target of E2F-mediated suppression of the differentiation-specific marker, transglutaminase type 1 (TG-1). Deletion of elements between -0.084 to -0.034 kb of the TG-1 promoter disabled E2F1-induced suppression of promoter activity. Electrophoretic mobility shift assays (EMSAs) demonstrated that Sp1 and Sp3 bound this region. Protein expression analysis suggested that squamous differentiation was accompanied by increased Sp1/Sp3 ratio. Cotransfection of proliferating HEKs or the squamous cell carcinoma (SCC) cell line, KJD-1/SV40, with an E2F inhibitor (E2Fd/n) and Sp1 expression plasmid was sufficient to activate the TG-1 promoter. The suppression of Sp1 activity by E2F in differentiated cells appeared to be indirect since we found no evidence of an Sp1/E2F coassociation on the TG-1 promoter fragment. Moreover, E2F inhibition in the presence of a differentiation stimulus induced Sp1 protein. These data demonstrate that (i) Sp1 can act as a differentiation stimulus, (ii) E2F-mediated suppression of differentiation-specific markers is indirect via Sp1 inhibition and (iii) a combination of E2F inhibition and Sp1 activation could form the basis of a differentiation therapy for SCCs.