3 resultados para caste

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The foraging process of location and exploitation of food in complex termite societies is in part reliant upon unequal division of specific tasks amongst its members (polyethism). To conduct studies assessing the role of individuals in foraging activities it is necessary to have descriptors of worker caste and instar. Here we provide biometric descriptors of specific caste and instar for worker caste and instars of Microcerotermes turneri (Froggatt) (Termitidae: Termitinae) for the worker castes (male and female) for the identification of individuals in laboratory assays applicable across multiple nests. The use of head width for determining sex of workers was successful across multiple nests. The length of the first three flagellum segments of the antenna and tibia three could be used to determine worker instar.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many models have been advanced to suggest how different expressions of sociality have evolved and are maintained. However these models ignore the function of groups for the particular species in question. Here we present a new perspective on sociality where the function of the group takes a central role. We argue that sociality may have primarily a reproductive, protective, or foraging function, depending on whether it enhances the reproductive, protective or foraging aspect of the animal's life (sociality may serve a mixture of these functions). Different functions can potentially cause the development of the same social behaviour. By identifying which function influences a particular social behaviour we can determine how that social behaviour will change with changing conditions, and which models are most pertinent. To test our approach we examined spider sociality, which has often been seen as the poor cousin to insect sociality. By using our approach we found that the group characteristics of eusocial insects is largely governed by the reproductive function of their groups, while the group characteristics of social spiders is largely governed by the foraging function of the group. This means that models relevant to insects may not be relevant to spiders. It also explains why eusocial insects have developed a strict caste system while spider societies are more egalitarian. We also used our approach to explain the differences between different types of spider groups. For example, differences in the characteristics of colonial and kleptoparasitic groups can be explained by differences in foraging methods, while differences between colonial and cooperative spiders can be explained by the role of the reproductive function in the formation of cooperative spider groups. Although the interactions within cooperative spider colonies are largely those of a foraging society, demographic traits and colony dynamics are strongly influenced by the reproductive function. We argue that functional explanations help to understand the social structure of spider groups and therefore the evolutionary potential for speciation in social spiders.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traditional measures of termite food preference assess consequences of foraging behavior such as wood consumption, aggregation and/or termite survivorship. Although studies have been done to investigate the specifics of foraging behavior this is not generally integrated into choice assay experiments. Here choice assays were conducted with small isolated (orphaned) groups of workers and compared with choice assays involving foragers from whole nests (non-orphaned) in the laboratory. Aggregation to two different wood types was used as a measure of preference. Specific worker caste and instars participating in initial exploration were compared between assay methods, with samples of termites taken from nest carton material and sites where termites were feeding. Aggregation results differ between choice assay techniques. Castes and instars responsible for initial exploration, as determined in whole nest trials, were not commonly found exploring in isolated group trials, nor were they numerous in termites taken from active feeding sites. Consequently the use of small groups of M. turneri worker termites extracted from active feeding sites may not be appropriate for use in choice assays.