14 resultados para cassette
em University of Queensland eSpace - Australia
Resumo:
The ATP-binding cassette (ABC) transporters are encoded by large gene families in plants. Although these proteins are potentially involved in a number of diverse plant processes, currently, very little is known about their actual functions. In this paper, through a cDNA microarray screening of anonymous cDNA clones from a subtractive library, we identified an Arabidopsis gene (AtPDR12) putatively encoding a member of the pleiotropic drug resistance (PDR) subfamily of ABC transporters. AtPDR12 displayed distinct induction profiles after inoculation of plants with compatible and incompatible fungal pathogens and treatments with salicylic acid, ethylene, or methyl jasmonate. Analysis of AtPDR12 expression in a number of Arabidopsis defense signaling mutants further revealed that salicylic acid accumulation, NPR1. function, and sensitivity to jasmonates and ethylene were all required for pathogen-responsive expression of AtPDR12. Germination assays using seeds from an AtPDR12 insertion line in the presence of sclareol resulted in lower germination rates and much stronger inhibition of root elongation in the AtPDR12 insertion line than in wild-type plants. These results suggest that AtPDR12 may be functionally related to the previously identified ABC transporters SpTUR2 and NpABC1, which transport sclareol. Our data also point to a potential role for terpenoids in the Arabidopsis defensive armory.
Resumo:
Infections caused by community-acquired (CA)-methicillin-resistant Staphylococcus aureus (MRSA) have been reported worldwide. We assessed whether any common genetic markers existed among 117 CA-MRSA isolates from the United States, France, Switzerland, Australia, New Zealand, and Western Samoa by performing polymerase chain reaction for 24 virulence factors and the methicillin-resistance determinant. The genetic background of the strain was analyzed by pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST). The CA-MRSA strains shared a type IV SCCmec cassette and the Panton-Valentine leukocidin locus, whereas the distribution of the other toxin genes was quite specific to the strains from each continent. PFGE and MLST analysis indicated distinct genetic backgrounds associated with each geographic origin, although predominantly restricted to the agr3 background. Within each continent, the genetic background of CA-MRSA strains did not correspond to that of the hospital-acquired MRSA.
Resumo:
We have previously developed replicon vectors derived from the Australian flavivirus Kunjin that have a unique noncytopathic nature and have been shown to direct prolonged high-level expression of encoded heterologous genes in vitro and in vivo and to induce strong and long-lasting immune responses to encoded immunogens in mice. To facilitate further applications of these vectors in the form of virus-like particles (VLPs), we have now generated a stable BHK packaging cell line, tetKUNCprME, carrying a Kunjin structural gene cassette under the control of a tetracycline-inducible promoter. Withdrawal of tetracycline from the medium resulted in production of Kunjin structural proteins that were capable of packaging transfected and self-amplified Kunjin replicon RNA into the secreted VLPs at titers of up to 1.6 x 10(9) VLPs per ml. Furthermore, secreted KUN replicon VLPs from tetKUNCprME cells could be harvested continuously for as long as 10 days after RNA transfection, producing a total yield of more than 1010 VLPs per 106 transfected cells. Passaging of VLPs on Vero cells or intracerebral injection into 2- to 4-day-old suckling mice illustrated the complete absence of any infectious Kunjin virus. tetKUNCprME cells were also capable of packaging replicon RNA from closely and distantly related flaviviruses, West Nile virus and dengue virus type 2, respectively. The utility of high-titer KUN replicon VLPs was demonstrated by showing increasing CD8(+)-T-cell responses to encoded foreign protein with increasing doses of KUN VLPs. A single dose of 2.5 x 10(7) VLPs carrying the human respiratory syncytial virus M2 gene induced 1,400 CD8 T cells per 10(6) splenocytes in an ex vivo gamma interferon enzyme-linked immunospot assay. The packaging cell line thus represents a significant advance in the development of the noncytopathic Kunjin virus replicon-based gene expression system and may be widely applicable to the basic studies of flavivirus RNA packaging and virus assembly as well as to the development of gene expression systems based on replicons from different flaviviruses.
Resumo:
Previous work had shown that the ratio of NMDA receptor NR1 subunit mRNA transcripts containing an N-terminal splice cassette to those that do not is markedly lower in regions of the Alzheimer's disease (AD) brain that are susceptible to pathological damage, compared with spared regions in the same cases or homotropic regions in controls. To elucidate the origins of this difference in proportionate expression, we measured the absolute levels of each of the eight NR1 transcripts by quantitative internally standardized RT-PCR assay. Expression of transcripts with the cassette was strongly attenuated in susceptible regions of Alzheimer's brain, whereas expression of non-cassette transcripts differed little from that in controls. The expression of other NR1 splice variants was not associated with pathology relevant to disease status, although some combinations of splice cassettes were well maintained in AD cases. The population profile of NR1 transcripts in occipital cortex differed from the profiles in other brain regions studied. Western analysis confirmed that the expression of protein isoforms containing the N-terminal peptide was very low in susceptible areas of the Alzheimer's brain. Cells that express NR1 subunits with the N-terminal cassette may be selectively vulnerable to toxicity in AD.
Resumo:
Increasing reports of the appearance of novel nonmultiresistant methicillin-resistant Staphylococcus aureus MRSA (MRSA) strains in the community and of the spread of hospital MRSA strains into the community are cause for public health concern. We conducted two national surveys of unique isolates of S. aureus from clinical specimens collected from nonhospitalized patients commencing in 2000 and 2002, respectively. A total of 11.7% of 2,498 isolates from 2000 and 15.4% of 2,486 isolates from 2002 were MRSA. Approximately 54% of the MRSA isolates were nonmultiresistant (resistant to less than three of nine antibiotics) in both surveys. The majority of multiresistant MRSA isolates in both surveys belonged to two strains (strains AUS-2 and AUS-3), as determined by pulsed-field gel electrophoresis (PFGE) and resistogram typing. The 3 AUS-2 isolates and 10 of the 11 AUS-3 isolates selected for multilocus sequence typing (MLST) and staphylococcal chromosomal cassette mec (SCCmec) analysis were ST239-MRSA-III (where ST is the sequence type) and thus belonged to the same clone as the eastern Australian MRSA strain of the 1980s, which spread internationally. Four predominant clones of novel nonmultiresistant MRSA were identified by PFGE, MLST, and SCCmec analysis: ST22-MRSA-IV (strain EMRSA-15), ST1-MRSA-IV (strain WA-1), ST30-MRSA-IV (strain SWP), and ST93-MRSA-IV (strain Queensland). The last three clones are associated with community acquisition. A total of 14 STs were identified in the surveys, including six unique clones of novel nonmultiresistant MRSA, namely, STs 73, 93, 129, 75, and 80sIv and a new ST. SCCmec types IV and V were present in diverse genetic backgrounds. These findings provide support for the acquisition of SCCmec by multiple lineages of S. aureus. They also confirm that both hospital and community strains of MRSA are now common in nonhospitalized patients throughout Australia.
Resumo:
An emerging public health phenomenon is the increasing incidence of methicillin-resistant Staphylococcus aureus (MRSA) infections that are acquired outside of health care facilities. One lineage of community-acquired MRSA (CA-MRSA) is known as the Western Samoan phage pattern (WSPP) clone. The central aim of this study was to develop an efficient genotyping procedure for the identification of WSPP isolates. The approach taken was to make use of the highly variable region downstream of mecA in combination with a single nucleotide polymorphism (SNP) defined by the S. aureus multilocus sequence typing (MLST) database. The premise was that a combinatorial genotyping method that interrogated both a highly variable region and the genomic backbone would deliver a high degree of informative power relative to the number of genetic polymorphisms-interrogated. Thirty-five MRSA isolates were used for this study, and their gene contents and order downstream of mecA were determined. The CA-MRSA isolates were found to contain a truncated mecA downstream region consisting of mecA-HVR-IS431 mec-dcs-Ins117, and a PCR-based method for identifying this structure was developed. The hospital-acquired isolates were found to contain eight different mecA downstream regions, three of which were novel. The Minimum SNPs computer software program was used to mine the S. aureus MLST database, and the arcC 2726 polymorph was identified as 82% discriminatory for ST-30. A real-time PCR assay was developed to interrogate this SNP. We found that the assay for the truncated mecA downstream region in combination with the interrogation of arcC position 272 provided an unambiguous identification of WSPP isolates.
Resumo:
Five candidate promoters were examined to determine their utility in directing immunogenic levels of expression of the C fragment from tetanus toxin in attenuated S. enterica used as an oral vaccine in mice. Promoters derived from the genes encoding the stringent starvation protein (sspA) from E. coli and S. enterica, but not ansB derived promoters, expressed immunogenic levels of C fragment from multi-copy plasmids in attenuated S. enterica in vivo and, following oral immunization, induced high titre specific anti-tetanus toxoid serum antibodies. We also demonstrate that not only the choice of promoter, replicon and growth conditions but also how expression constructs are assembled in the chosen plasmid is critical for the successful development of plasmid-based antigen delivery systems using attenuated S. enterica. In addition, the S. enterica sspA promoter is able to elicit anti-tetanus toxoid antibodies in mice when the psspA-tetC expression cassette is integrated in single copy on the S. enterica chromosome.
Resumo:
The transcription factor PAX2 is expressed during normal kidney development and is thought to influence outgrowth and branching of the ureteric bud. Mice with homozygous null Pax2 mutations have developmental defects of the midbrain-hindbrain region, optic nerve, and ear and are anephric. During nephrogenesis, PAX2 is also expressed by mesenchymal cells as they cluster and reorganize to form proximal elements of each nephron, but the function of PAX2 in these cells is unknown. In this study we hypothesized that PAX2 activates expression of WNT4, a secreted glycoprotein known to be critical for successful nephrogenesis. PAX2 protein was identified in distal portions of the S-shaped body, and the protein persists in the emerging proximal tubules of murine fetal kidney. PAX2 activated WNT4 promoter activity 5-fold in co-transfection assays with JTC12 cells derived from the proximal tubule. Inspection of the 5'-flanking sequence of the human WNT4 gene identified three novel PAX2 recognition motifs; each exhibited specific PAX2 protein binding in electromobility shift assays. Two motifs were contained within a completely duplicated 0.66-kb cassette. Transfection of JTC12 cells with a PAX2 expression vector was associated with a 7-fold increase in endogenous WNT4 mRNA. In contrast, Wnt4 mRNA was decreased by 60% in mesenchymal cell condensates of fetal kidney from mice with a heterozygous Pax2 mutation. We speculated that a key function of PAX2 is to activate WNT4 gene expression in metanephric mesenchymal cells as they differentiate to form elements of the renal tubules.
Resumo:
A common feature associated with the replication of most RNA viruses is the formation of a unique membrane environment encapsulating the viral replication complex. For their part, flaviviruses are no exception, whereupon infection causes a dramatic rearrangement and induction of unique membrane structures within the cytoplasm of infected cells. These virus-induced membranes, termed paracrystalline arrays, convoluted membranes, and vesicle packets, all appear to have specific functions during replication and are derived from different organelles within the host cell. The aim of this study was to identify which protein(s) specified by the Australian strain of West Nile virus, Kunjin virus (KUNV), are responsible for the dramatic membrane alterations observed during infection. Thus, we have shown using immunolabeling of ultrathin cryosections of transfected cells that expression of the KUNV polyprotein intermediates NS4A-4B and NS213-34A, as well as that of individual NS4A proteins with and without the C-terminal transmembrane domain 2K, resulted in different degrees of rearrangement of cytoplasmic membranes. The formation of the membrane structures characteristic for virus infection required coexpression of an NS4A-NS4B cassette with the viral protease NS2B-3pro which was shown to be essential for the release of the individual NS4A and NS4B proteins. Individual expression of NS4A protein retaining the C-terminal transmembrane domain 2K resulted in the induction of membrane rearrangements most resembling virus-induced structures, while removal of the 2K domain led to a less profound membrane rearrangement but resulted in the redistribution of the NS4A protein to the Golgi apparatus. The results show that cleavage of the KUNV polyprotein NS4A-4B by the viral protease is the key initiation event in the induction of membrane rearrangement and that the NS4A protein intermediate containing the uncleaved C-terminal transmembrane domain plays an essential role in these membrane rearrangements.
Resumo:
The aim of this study was to identify a set of genetic polymorphisms that efficiently divides methicillin-resistant Staphylococcus aureus (MRSA) strains into groups consistent with the population structure. The rationale was that such polymorphisms could underpin rapid real-time PCR or low-density array-based methods for monitoring MRSA dissemination in a cost-effective manner. Previously, the authors devised a computerized method for identifying sets of single nucleoticle polymorphisms (SNPs) with high resolving power that are defined by multilocus sequence typing (MLST) databases, and also developed a real-time PCR method for interrogating a seven-member SNP set for genotyping S. aureus. Here, it is shown that these seven SNPs efficiently resolve the major MRSA lineages and define 27 genotypes. The SNP-based genotypes are consistent with the MRSA population structure as defined by eBURST analysis. The capacity of binary markers to improve resolution was tested using 107 diverse MRSA isolates of Australian origin that encompass nine SNP-based genotypes. The addition of the virulence-associated genes cna, pvl and bbplsdrE, and the integrated plasmids pT181, p1258 and pUB110, resolved the nine SNP-based genotypes into 21 combinatorial genotypes. Subtyping of the SCCmec locus revealed new SCCmec types and increased the number of combinatorial genotypes to 24. It was concluded that these polymorphisms provide a facile means of assigning MRSA isolates into well-recognized lineages.
Resumo:
We investigate the gas-particle dynamics of a device designed for biological pre-clinical experiments. The device uses transonic/supersonic gas flow to accelerate microparticles such that they penetrate the outer skin layers. By using a shock tube coupled to a correctly expanded nozzle, a quasi-one-dimensional, quasi-steady flow (QSF) is produced to uniformly accelerate the microparticles. The system utilises a microparticle cassette (a diaphragm sealed container) that incorporates a jet mixing mechanism to stir the particles prior to diaphragm rupture. Pressure measurements reveal that a QSF exit period - suitable for uniformly accelerating microparticles - exists between 155 and 220 mus after diaphragm rupture. Immediately preceding the QSF period, a starting process secondary shock was shown to form with its (x,t) trajectory comparing well to theoretical estimates. To characterise the microparticle, flow particle image velocimetry experiments were conducted at the nozzle exit, using particle payloads with varying diameter (2.7-48 mu m), density (600-16,800 kg/m(3)) and mass (0.25-10 mg). The resultant microparticle velocities were temporally uniform. The experiments also show that the starting process does not significantly influence the microparticle nozzle exit velocities. The velocity distribution across the nozzle exit was also uniform for the majority of microparticle types tested. For payload masses typically used in pre-clinical drug and vaccine applications (
Resumo:
The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. AD associated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity of neuronal degradation.
Resumo:
The inherent neurotoxic potential ofthe endogenous excitatory amino acid glutamate, may be causally related to the pathogenesis ofAD neurodegeneration disorders. Neuronal excitotoxicity is conceivably mediated by the N-methyl-D-aspartate-(NMDA)-Ca2+- ionotropic receptor. NMDA receptors exist as multimeric complexes comprising proteins from two families – NR1 and NR2(A-D). The polyamines, spermine and spermidine bind to, and modulate NMDA receptor efficacy via interaction with exon 5, an alternatively-spliced, 21 amino acid, N-terminal cassette. ADassociated cognitive impairment may therefore occur via subunitspecific NMDA receptor dysfunction effecting regional selectivity ofneuronal degradation. Total RNA was prepared from pathologically spared and susceptible regions from AD cases and matched controls. Quantitation was performed using standard curve methodology in which a known amount ofa synthetic ribonucleic acid competitor deletion construct was co-amplified against total RNA. Expression profile analysis oftwo NR1 mRNA subsets has revealed significant differences in NR11XX mRNA levels in cingulate gyrus, P.
Resumo:
This research explores gestures used in the context of activities in the workplace and in everyday life in order to understand requirements and devise concepts for the design of gestural information appliances. A collaborative method of video interaction analysis devised to suit design explorations, the Video Card Game, was used to capture and analyse how gesture is used in the context of six different domains: the dentist's office; PDA and mobile phone use; the experimental biologist's laboratory; a city ferry service; a video cassette player repair shop; and a factory flowmeter assembly station. Findings are presented in the form of gestural themes, derived from the tradition of qualitative analysis but bearing some similarity to Alexandrian patterns. Implications for the design of gestural devices are discussed.