7 resultados para carbon fibers

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The comparative analysis of the most widely used methods of mesoporosity characterization of two activated carbon fibers is presented. Not only the older methods are used, i.e. Barrett, Joyner and Halenda (BJH), Dubinin (the so-called first variant-D-1ST and the so-called second variant-D-2ND), Dollimore and Heal (DH), and Pierce (P) but the recently developed ones, i.e. the method of Nguyen and Do (ND) and that developed by Do (Do) are also applied. Additionally, the method of the characterization of fractality is put to use (fractal analog of FHH isotherm). The results are compared and discussed. (C) 2002 Elsevier Science B.V. All fights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present results of the internal structure (pore size and pore wall thickness distributions) of a series of activated carbon fibers with different degrees of burn-off, determined from interpretation of argon adsorption data at 87 K using infinite and finite wall thickness models. The latter approach has recently been developed in our laboratory. The results show that while the low bun-off samples have nearly uniform pore size (

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Grand canonical Monte Carlo (GCMC) simulation was used for the systematic investigation of the supercritical methane adsorption at 273 K on an open graphite surface and in slitlike micropores of different sizes. For both considered adsorption systems the calculated excess adsorption isotherms exhibit a maximum. The effect of the pore size on the maximum surface excess and isosteric enthalpy of adsorption for methane storage at 273 K is discussed. The microscopic detailed picture of methane densification near the homogeneous graphite wall and in slitlike pores at 273 K is presented with selected local density profiles and snapshots. Finally, the reliable pore size distributions, obtained in the range of the microporosity, for two pitch-based microporous activated carbon fibers are calculated from the local excess adsorption isotherms obtained via the GCMC simulation. The current systematic study of supercritical methane adsorption both on an open graphite surface and in slitlike micropores performed by the GCMC summarizes recent investigations performed at slightly different temperatures and usually a lower pressure range by advanced methods based on the statistical thermodynamics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this article we study the effects of adsorbed phase compression, lattice structure, and pore size distribution on the analysis of adsorption in microporous activated carbon. The lattice gas approach of Ono-Kondo is modified to account for the above effects. Data of nitrogen adsorption at 77 K onto a number of activated carbon samples are analyzed to investigate the pore filling pressure versus pore width, the packing effect, and the compression of the adsorbed phase. It is found that the PSDs obtained from this analysis are comparable to those obtained by the DFT method. The discrete nature of the PSDs derived from the modified lattice gas theory is due to the inherent assumption of discrete layers of molecules. Nevertheless, it does provide interesting information on the evolution of micropores during the activation process.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper a new structural model is presented to describe the evolution of porosity of char during the gasification process. The model assumes the char structure to be composed of bundles of parallel graphite layers, and the reactivities of each layer with the gasification agent are assumed to be different to represent the different degree of heterogeneity of each layer (i.e. each layer will react with the gasification agent at a different rate). It is this difference in the reactivity that allows micropores to be created during the course of gasification. This simple structural model enables the evolution of pore volume, pore geometrical surface area and the pore size distribution to be described with respect to the extent of char burn-off. The model is tested against the experimental data of gasification of longan seed-derived char with carbon dioxide and it is found that the agreement between the model and the data is reasonably satisfactory, especially the evolution of surface area and pore volume with burn-off.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on a self-similar array model of single-walled carbon nanotubes (SWNTs), the pore structure of SWNT bundles is analyzed and compared with that obtained from the conventional triangular model and adsorption experimental results. In addition to the well known cylindrical endo-cavities and interstitial pores, two types of newly defined pores with diameters of 2-10 and 8-100 nm are proposed, inter-bundle pores and inter-array pores. In particular, the relationship between the packing configuration of SWNTs and their pore structures is systematically investigated. (c) 2005 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Carbon nanotubes (CNT) are well-ordered, high aspect ratio allotropes of carbon. The two main variants, single-walled carbon nanotubes (SWCNT) and multi-walled carbon nanotubes (MWCNT) both possess a high tensile strength, are ultra-light weight, and have excellent chemical and thermal stability. They also possess semi- and metallic-conductive properties. This startling array of features has led to many proposed applications in the biomedical field, including biosensors, drug and vaccine delivery and the preparation of unique biomaterials such as reinforced and/or conductive polymer nanocomposites. Despite an explosion of research into potential devices and applications, it is only recently that information on toxicity and biocompatibility has become available. This review presents a summary of the performance of existing carbon biomaterials and gives an outline of the emerging field of nanotoxicology, before reviewing the available and often conflicting investigations into the cytotoxicity and biocompatibility of CNT. Finally, future areas of investigation and possible solutions to current problems are proposed. (c) 2005 Elsevier Ltd. All rights reserved.