28 resultados para cadeia de Markov
em University of Queensland eSpace - Australia
Resumo:
Krylov subspace techniques have been shown to yield robust methods for the numerical computation of large sparse matrix exponentials and especially the transient solutions of Markov Chains. The attractiveness of these methods results from the fact that they allow us to compute the action of a matrix exponential operator on an operand vector without having to compute, explicitly, the matrix exponential in isolation. In this paper we compare a Krylov-based method with some of the current approaches used for computing transient solutions of Markov chains. After a brief synthesis of the features of the methods used, wide-ranging numerical comparisons are performed on a power challenge array supercomputer on three different models. (C) 1999 Elsevier Science B.V. All rights reserved.AMS Classification: 65F99; 65L05; 65U05.
Resumo:
We shall study continuous-time Markov chains on the nonnegative integers which are both irreducible and transient, and which exhibit discernible stationarity before drift to infinity sets in. We will show how this 'quasi' stationary behaviour can be modelled using a limiting conditional distribution: specifically, the limiting state probabilities conditional on not having left 0 for the last time. By way of a dual chain, obtained by killing the original process on last exit from 0, we invoke the theory of quasistationarity for absorbing Markov chains. We prove that the conditioned state probabilities of the original chain are equal to the state probabilities of its dual conditioned on non-absorption, thus allowing us to establish the simultaneous existence and then equivalence, of their limiting conditional distributions. Although a limiting conditional distribution for the dual chain is always a quasistationary distribution in the usual sense, a similar statement is not possible for the original chain.
Resumo:
This note considers continuous-time Markov chains whose state space consists of an irreducible class, C, and an absorbing state which is accessible from C. The purpose is to provide results on mu-invariant and mu-subinvariant measures where absorption occurs with probability less than one. In particular, the well-known premise that the mu-invariant measure, m, for the transition rates be finite is replaced by the more natural premise that m be finite with respect to the absorption probabilities. The relationship between mu-invariant measures and quasi-stationary distributions is discussed. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
We shall be concerned with the problem of determining quasi-stationary distributions for Markovian models directly from their transition rates Q. We shall present simple conditions for a mu-invariant measure m for Q to be mu-invariant for the transition function, so that if m is finite, it can be normalized to produce a quasi-stationary distribution. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
enin et al. (2000) recently introduced the idea of similarity in the context of birth-death processes. This paper examines the extent to which their results can be extended to arbitrary Markov chains. It is proved that, under a variety of conditions, similar chains are strongly similar in a sense which is described, and it is shown that minimal chains are strongly similar if and only if the corresponding transition-rate matrices are strongly similar. A general framework is given for constructing families of strongly similar chains; it permits the construction of all such chains in the irreducible case.
Resumo:
This note presents a method of evaluating the distribution of a path integral for Markov chains on a countable state space.
Resumo:
Computer simulation of dynamical systems involves a phase space which is the finite set of machine arithmetic. Rounding state values of the continuous system to this grid yields a spatially discrete dynamical system, often with different dynamical behaviour. Discretization of an invertible smooth system gives a system with set-valued negative semitrajectories. As the grid is refined, asymptotic behaviour of the semitrajectories follows probabilistic laws which correspond to a set-valued Markov chain, whose transition probabilities can be explicitly calculated. The results are illustrated for two-dimensional dynamical systems obtained by discretization of fractional linear transformations of the unit disc in the complex plane.
Resumo:
This paper presents a method of evaluating the expected value of a path integral for a general Markov chain on a countable state space. We illustrate the method with reference to several models, including birth-death processes and the birth, death and catastrophe process. (C) 2002 Elsevier Science Inc. All rights reserved.
Terrain classification based on markov random field texture modeling of SAR and SAR coherency images
Resumo:
A recent development of the Markov chain Monte Carlo (MCMC) technique is the emergence of MCMC samplers that allow transitions between different models. Such samplers make possible a range of computational tasks involving models, including model selection, model evaluation, model averaging and hypothesis testing. An example of this type of sampler is the reversible jump MCMC sampler, which is a generalization of the Metropolis-Hastings algorithm. Here, we present a new MCMC sampler of this type. The new sampler is a generalization of the Gibbs sampler, but somewhat surprisingly, it also turns out to encompass as particular cases all of the well-known MCMC samplers, including those of Metropolis, Barker, and Hastings. Moreover, the new sampler generalizes the reversible jump MCMC. It therefore appears to be a very general framework for MCMC sampling. This paper describes the new sampler and illustrates its use in three applications in Computational Biology, specifically determination of consensus sequences, phylogenetic inference and delineation of isochores via multiple change-point analysis.
Resumo:
Let (Phi(t))(t is an element of R+) be a Harris ergodic continuous-time Markov process on a general state space, with invariant probability measure pi. We investigate the rates of convergence of the transition function P-t(x, (.)) to pi; specifically, we find conditions under which r(t) vertical bar vertical bar P-t (x, (.)) - pi vertical bar vertical bar -> 0 as t -> infinity, for suitable subgeometric rate functions r(t), where vertical bar vertical bar - vertical bar vertical bar denotes the usual total variation norm for a signed measure. We derive sufficient conditions for the convergence to hold, in terms of the existence of suitable points on which the first hitting time moments are bounded. In particular, for stochastically ordered Markov processes, explicit bounds on subgeometric rates of convergence are obtained. These results are illustrated in several examples.
Resumo:
We derive necessary and sufficient conditions for the existence of bounded or summable solutions to systems of linear equations associated with Markov chains. This substantially extends a famous result of G. E. H. Reuter, which provides a convenient means of checking various uniqueness criteria for birth-death processes. Our result allows chains with much more general transition structures to be accommodated. One application is to give a new proof of an important result of M. F. Chen concerning upwardly skip-free processes. We then use our generalization of Reuter's lemma to prove new results for downwardly skip-free chains, such as the Markov branching process and several of its many generalizations. This permits us to establish uniqueness criteria for several models, including the general birth, death, and catastrophe process, extended branching processes, and asymptotic birth-death processes, the latter being neither upwardly skip-free nor downwardly skip-free.
Resumo:
Markov chain Monte Carlo (MCMC) is a methodology that is gaining widespread use in the phylogenetics community and is central to phylogenetic software packages such as MrBayes. An important issue for users of MCMC methods is how to select appropriate values for adjustable parameters such as the length of the Markov chain or chains, the sampling density, the proposal mechanism, and, if Metropolis-coupled MCMC is being used, the number of heated chains and their temperatures. Although some parameter settings have been examined in detail in the literature, others are frequently chosen with more regard to computational time or personal experience with other data sets. Such choices may lead to inadequate sampling of tree space or an inefficient use of computational resources. We performed a detailed study of convergence and mixing for 70 randomly selected, putatively orthologous protein sets with different sizes and taxonomic compositions. Replicated runs from multiple random starting points permit a more rigorous assessment of convergence, and we developed two novel statistics, delta and epsilon, for this purpose. Although likelihood values invariably stabilized quickly, adequate sampling of the posterior distribution of tree topologies took considerably longer. Our results suggest that multimodality is common for data sets with 30 or more taxa and that this results in slow convergence and mixing. However, we also found that the pragmatic approach of combining data from several short, replicated runs into a metachain to estimate bipartition posterior probabilities provided good approximations, and that such estimates were no worse in approximating a reference posterior distribution than those obtained using a single long run of the same length as the metachain. Precision appears to be best when heated Markov chains have low temperatures, whereas chains with high temperatures appear to sample trees with high posterior probabilities only rarely. [Bayesian phylogenetic inference; heating parameter; Markov chain Monte Carlo; replicated chains.]
Resumo:
In electronic support, receivers must maintain surveillance over the very wide portion of the electromagnetic spectrum in which threat emitters operate. A common approach is to use a receiver with a relatively narrow bandwidth that sweeps its centre frequency over the threat bandwidth to search for emitters. The sequence and timing of changes in the centre frequency constitute a search strategy. The search can be expedited, if there is intelligence about the operational parameters of the emitters that are likely to be found. However, it can happen that the intelligence is deficient, untrustworthy or absent. In this case, what is the best search strategy to use? A random search strategy based on a continuous-time Markov chain (CTMC) is proposed. When the search is conducted for emitters with a periodic scan, it is shown that there is an optimal configuration for the CTMC. It is optimal in the sense that the expected time to intercept an emitter approaches linearity most quickly with respect to the emitter's scan period. A fast and smooth approach to linearity is important, as other strategies can exhibit considerable and abrupt variations in the intercept time as a function of scan period. In theory and numerical examples, the optimum CTMC strategy is compared with other strategies to demonstrate its superior properties.