41 resultados para câncer de pele tipo melanoma
em University of Queensland eSpace - Australia
Resumo:
Past studies have shown that apoptosis mediated by TNF-related apoptosis-inducing ligand (TRAIL) is regulated by the expression of two death receptors [TRAIL receptor 1 (TRAIL-RI) and TRAIL-R2] and two decoy receptors (TRAIL-R3 and TRAIL-R4) that inhibit apoptosis, In previous studies, me have shown that TRAIL but not other members of the tumor necrosis factor family induce apoptosis in approximately two-thirds of melanoma cell lines. Here, we examined whether the expression of TRAIL-R at the mRNA and protein level in a panel of 28 melanoma cell lines and melanocytes correlated with their sensitivity to TRAIL-induced apoptosis, We report that at least three factors appear to underlie the variability in TRAIL-induced apoptosis. (a) Pour of nine cell lines that were insensitive to TRAIL-induced apoptosis failed to express death receptors, and in two instances, lines were devoid of all TRAIL-Rs. Southern analysis suggested this was due to loss of the genes for the death receptors, (b) Despite the presence of mRNA for the TRAIL-R, some of the lines failed to express TRAIL-R protein on their surface. This was evident for TRAIL-RI and more so for the TRAIL decoy receptors TRAIL-R3 and -R4, Studies on permeabilized cells revealed that the receptors were located within the cytoplasm and redistribution from the cytoplasm may represent a posttranslational control mechanism. (c) Surface expression of TRAIL-RI and -R2 (but not TRAIL-R3 and -R4) showed an overall correlation with TRAIL-induced apoptosis. However, certain melanoma cell lines and clones were relatively resistant to TRAIL-induced apoptosis despite the absence of decoy receptors and moderate levels of TRAIL-RI and -R2 expression. This may indicate the presence of inhibitors within the cells, but resistance to apoptosis could not be correlated with expression of the caspase inhibitor FLICE-inhibitory protein. mRNA for another TRAIL receptor, osteoprotegerin, was expressed in 22 of the melanoma lines but not on melanocytes. Its role in induction of apoptosis remains to be studied. These results appear to have important implications for future clinical studies on TRAIL.
Resumo:
Isolated limb perfusion (ILP) with melphalan is used to treat recurrent melanoma. This study aimed to develop a microdialysis technique for melphalan tissue concentration measurement during ILP. The effects of melphalan concentration (50-600 mu g/ml), microdialysis flow rate (0.55-17.5 mu l/min), probe length (5-50 mm) and temperature (25-41.5 degrees C) on in vitro recovery were studied. In addition, in vivo recovery was measured in rat hindlimbs perfused with melphalan using 50 mm microdialysis probes implanted subcutaneously and into muscle. Both dialysate and tissue sample melphalan concentrations were determined by high performance liquid chromatography. The in vitro recovery of melphalan was not affected by melphalan concentration or temperature, but increased with probe length and decreased with flow rate. The melphalan concentrations in subcutaneous and muscle dialysates were not significantly different. A linear relationship was found between tissue dialysate concentrations and actual tissue concentrations of melphalan (r(2) = 0.97). Microdialysis is a potential method for tissue drug monitoring which may assist in the efficacious use of cytotoxics in human ILP. (C) 2000 Lippincott Williams & Wilkins.
Resumo:
Induction of apoptosis in cells by TNF-related apoptosis-inducing ligand (TRAIL), a member of the TNF family, is believed to be regulated by expression of two death-inducing and two inhibitory (decoy) receptors on the cell surface. In previous studies we found no correlation between expression of decoy receptors and susceptibility of human melanoma cells to TRAIL-induced apoptosis, In view of this, we studied the localization of the receptors in melanoma cells by confocal microscopy to better understand their function. We show that the death receptors TRAIL-R1 and R2 are located in the trans-Golgi network, whereas the inhibitory receptors TRAIL-R3 and -R4 are located in the nucleus. After exposure to TRAIL, TRAIL-R1 and -R2 are internalized into endosomes, whereas TRAIL-R3 and -R4 undergo relocation from the nucleus to the cytoplasm and cell membranes. This movement of decoy receptors was dependent on signals from TRAIL-R1 and -R2, as shown by blocking experiments with Abs to TRAIL-R1 and -R2, The location of TRAIL-R1, -R3, and -R4 in melanoma cells transfected with cDNA for these receptors was similar to that in nontransfected cells, Transfection of TRAIL-R3 and -R4 increased resistance of the melanoma lines to TRAIL-induced apoptosis even in melanoma lines that naturally expressed these receptors. These results indicate that abnormalities in decoy receptor location or function may contribute to sensitivity of melanoma to TRAIL-induced apoptosis and suggest that further studies are needed on the functional significance of their nuclear location and TRAIL-induced movement within cell.
Resumo:
Cultured melanoma cells release soluble factors that influence immune responses. Screening of a cDNA library with anti-sera from a melanoma patient identified an immunoreactive plaque, which encoded heavy-chain ferritin (H-ferritin), Previous studies have drawn attention to the immunosuppressive effects of this molecule and prompted further studies on its biochemical and functional properties in human melanoma, These studies demonstrated, firstly, that H-ferritin appeared to be secreted by melanoma cells, as shown by immunoprecipitation of a 21.5 kDa band from supernatants. It was also detected in extracts of melanoma cells by Western blotting as 43 and 64 kDa dimers and trimers of the 21.5 kDa fraction. Secondly, flow-cytometric analysis of H- and light-chain ferritin (L-ferritin) expression on melanoma showed a wide variation in L-ferritin expression and consequently of the ratio of H- to L-ferritin expression. Suppression of mitogenic responses of lymphocytes to anti-CD3 showed a correlation with the ratio of H- to L-ferritin in the supernatants and was specific for H-ferritin, as shown by inhibition studies with a monoclonal antibody (MAb) against H-ferritin, Similar results were obtained with H- and L-ferritin from other sources. Suppression of mitogenic responses of lymphocytes to anti-CD3 by H-ferritin was inhibited using a MAb against IL-IO, which suggested that the immunosuppressive effect of H-ferritin was mediated by IL-IO, Assays of cytokine production from anti-CD3-stimulated lymphocytes showed that H-ferritin markedly increased production of IL-10 and IFN-gamma and had only slight effects on IL-2 and IL-4 production, Our results suggest that melanoma cells may be a major source of H-ferritin and that production of the latter may account for some of the immunosuppressive effects of melanoma, (C) 2001 Wiley-Liss. Inc.
Resumo:
In previous studies we have shown that the sensitivity of melanoma cell lines to tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)induced apoptosis was determined largely by the level of expression of death receptor TRAIL receptor 2 on the cells. However, approximately one-third of melanoma cell lines were resistant to TRAIL, despite expression of high levels of TRAIL receptor 2. The present studies show that these cell lines had similar levels of TRAIL-induced activated caspase-3 as the TRAIL-sensitive lines, but the activated caspase-3 did not degrade substrates downstream of caspase-3 [inhibitor of caspase-activated DNase and poly(ADP-ribose) polymerase]. This appeared to be due to inhibition of caspase-3 by X-linked inhibitor of apoptosis (XIAP) because XIAP was bound to activated caspase-3, and transfection of XIAP into TRAIL-sensitive cell lines resulted in similar inhibition of TRAIL-induced apoptosis. Conversely, reduction of XIAP levels by overexpression of Smac/ DIABLO in the TRAIL-resistant melanoma cells was associated with the appearance of catalytic activity by caspase-3 and increased TRAIL-induced apoptosis. TRAIL was shown to cause release of Smac/DIABLO from mitochondria, but this release was greater in TRAIL-sensitive cell lines than in TRAIL-resistant cell lines and was associated with downregulation of XIAP levels. Furthermore, inhibition of Smac/DIABLO release by overexpression of Bcl-2 inhibited down-regulation of XIAP levels. These results suggest that Smac/DIABLO release from mitochondria and its binding to XIAP are an alternative pathway by which TRAIL induces apoptosis of melanoma, and this pathway is dependent on the release of activated caspase-3 from inhibition by XIAP and possibly other inhibitor of apoptosis family members.
Resumo:
Dendritic cells (DCs) are the most potent professional antigen-presenting cells (APCs), which play a vital role in primary immune responses. Introducing genes into DCs will allow constitutive expression of the encoded proteins and thus prolong the presentation of the antigens derived therefrom. In addition, multiple and unidentified epitopes encoded by the entire tumor-associated antigen (TAA) gene may enhance T cell activation. This study demonstrated that an HIV-1-based lentiviral vector conferred efficient gene transfer to DCs. The transgene, murine tyrosinase-related protein 2 (mTRP-2), encodes a clinically relevant melanoma-associated antigen (MAA), which has been found to be a tumor rejection antigen for B16 melanoma. The transfer and proper processing of mTRP-2 in DCs, in terms of RNA transcription activity and protein expression, were verified by RT-PCR and specific antibody, respectively. Administration of mTRP-2 gene-modified DCs (DC-HR'CmT2) to C57BL/6 mice evoked strong protection against tumor challenge, for which the presence of CD4(+) and CD8(+) cells during both the priming and challenge phase was essential. In a therapy model, our results showed that four of seven mice with preestablished tumor remained tumor free for 80 days after therapeutic vaccination. Given the results shown in this study, mTRP-2 gene transfer to DCs provides a potential therapeutic strategy for the management of melanoma, especially in the early stage of the disease.
Resumo:
We have shown previously that melanoma cells in culture release heavy-chain ferritin (H-Ferritin) into supernatants and that this is responsible for the suppression of responses of peripheral blood lymphocytes stimulated by anti-CD3. These effects were mediated by activation of regulatory T cells to produce interleukin (IL)-10. In the present study, we examined whether a similar relation might exist between levels of H-Ferritin and activation of regulatory T cells in patients with melanoma. Ferritin levels were evaluated by ELISA and regulatory T-cell numbers were assessed by three-color flow cytometry to identify CD4(+) CD25(+) CD69(-) T cells. CD69 positive cells were excluded to avoid inclusion of normal activated CD4, CD25 expressing T cells. Measurements of H- and light-chain (L)-Ferritin by ELISA revealed that H- but not L-Ferritin was elevated in the circulation of melanoma patients. In addition, these studies revealed a marked increase in the number of CD4+ CD25+ CD69- T cells in such patients, compared with age-matched controls. The ratio of H-Ferritin:L-Ferritin correlated with the levels of regulatory T cells consistent with a causal relation between unbound H-Ferritin levels and the activation of regulatory T cells. H-Ferritin or regulatory T cells did not, however, correlate with the stage of the melanoma. These results provide evidence for the importance of H-Ferritin in the induction of regulatory T cells in patients with melanoma and provide additional insight into the suppression of immune responses in such patients.
Resumo:
The current study aims to ascertain the fate of the melanocyte stimulating hormone (MSH) receptor and its ligand [Nle(4), D-Phe(7)]alpha-MsH (NDP-MSH) following binding to murine B16 melanoma cells. Cells were incubated with [I-125]-NDP-MSH for up to 180 min and binding, internalization and degradation determined. Intracellular trafficking of the radiolabel was assessed !using Percoll density gradient centrifugation of homogenized cells. Receptor down-regulation and receptor mRNA levels were also measured over 96 hr after exposure to 1 mu M ligand. NDP-MSH accumulation increased with time in a temperature-dependent manner and was inhibited by excess peptide. The ligand was rapidly internalized and translocated to the lysosomal compartment where it was degraded. Internalization was accompanied by a loss or down-regulation of cell surface receptors, suggesting internalization of the NDP-MSH-receptor complex. No recycling of the receptors between the plasma membrane and intracellular compartments could be detected in this cell-hue. Approximately 15% of the surface receptors were resistant to down-regulation, possibly indicating receptor heterogeneity. Down-regulation persisted ibr up to 96 hr and was accompanied by a decrease in MSH receptor mRNA levels 48 hr after treatment. However, before this time, transcript levels were the same in treated and control cells. In contrast to what was seen with NDP-MSH, cell surface receptors removed with trypsin wc:re rapidly replaced. These results show that NDP-MSH not only induced MSH receptor :internalization but also inhibited receptor turnover, resulting in a prolonged down-regulation. It is concluded that, in B16 cells, the MSH receptor undergoes ligand-dependent internalization, resulting in a prolonged down-regulation. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
We have established a surviving model of isolated limb perfusion using xenografts of the human melanoma cell line MM 96L injected subcutaneously into the hindlimb of a nude rat, The femoral artery and vein were cannulated via the left renal artery and vein and the hind limb was isolated using tourniquets. The limb was perfused with Krebs Heinseleit buffer at 37 degrees C containing 4.7% bovine serum albumin at a constant flow rate of 4 mi per min for 30-60 min with 100% survival of the animals, Tumour vascularization and blood flow were demonstrated using vascular casts and [Cr-51]-microspheres. Following the addition of melphalan (15 or 100 mu g/ml), drug concentrations in the perfusate, tissues and systemic circulation were determined using high pressure liquid chromatography (HPLC), Systemic leakage, assessed using [I-125]albumin and melphalan and detected by a gamma-counter and HPLC respectively, was <0.5%. The melphalan concentration and tissue flow rate in the tumour deposits were 40 and 30% respectively, when compared with the surrounding subcutaneous tissue, At a dose of 15 mu g/ml, melphalan caused a reduction in tumour growth after 60 min perfusion, and a significant reduction in tumour size was seen when the melphalan dose was 100 mu g/ml. The surviving nude rat model of isolated limb perfusion for recurrent melanoma will allow examination of optimal perfusion conditions, along with the pharmacokinetics, pharmacodynamics and efficacy of melphalan and other drugs.
Resumo:
The optimal dosing schedule for melphalan therapy of recurrent malignant melanoma in isolated limb perfusions has been examined using a physiological pharmacokinetic model with data from isolated rat hindlimb perfusions (IRHP), The study included a comparison of melphalan distribution in IRHP under hyperthermia and normothermia conditions. Rat hindlimbs were perfused with Krebs-Henseleit buffer containing 4.7% bovine serum albumin at 37 or 41.5 degrees C at a flow rate of 4 ml/min. Concentrations of melphalan in perfusate and tissues were determined by high performance liquid chromatography with fluorescence detection, The concentration of melphalan in perfusate and tissues was linearly related to the input concentration. The rate and amount of melphalan uptake into the different tissues was higher at 41.5 degrees C than at 37 degrees C. A physiological pharmacokinetic model was validated from the tissue and perfusate time course of melphalan after melphalan perfusion. Application of the model involved the amount of melphalan exposure in the muscle, skin and fat in a recirculation system was related to the method of melphalan administration: single bolus > divided bolus > infusion, The peak concentration of melphalan in the perfusate was also related to the method of administration in the same order, Infusing the total dose of melphalan over 20 min during a 60 min perfusion optimized the exposure of tissues to melphalan whilst minimizing the peak perfusate concentration of melphalan. It is suggested that this method of melphalan administration may be preferable to other methods in terms of optimizing the efficacy of melphalan whilst minimizing the limb toxicity associated with its use in isolated limb perfusion.
Resumo:
The regulation of putrescine transport in difluoromethylornithine-treated B16 melanoma cells by extracellular Ca2+ has been investigated. It was found that physiological concentrations of Ca2+ were essential for optimum uptake of putrescine and spermidine. Mg2+, albeit at higher concentrations, also could potentiate polyamine transport. The maximum rate of putrescine uptake increased from 1698 +/-: 67 pmol/min/mg DNA in the absence of Ca2+ to 3100 +/- 98 pmol/min/mg DNA in the presence of 0.5 mM Ca2+. There was no change in K-m. While Ca2+ enhanced transport of both putrescine and spermidine it did not affect the uptake of deoxyglucose, thymidine or leucine. Putrescine did not alter Ca2+ fluxes suggesting that the two cations do not share a common transport system. The effects of Ca2+ on putrescine uptake appeared to be mediated extracellularly firstly because Ca2+ did not potentiate putrescine uptake in the presence of A23187 and secondly, because the effects of Ca2+ were completely inhibited by the lanthanide Tb3+, which binds to calcium-dependent proteins and does not readily cross biological membranes. Ca2+ did not affect putrescine transport in the absence of extracellular Na+. Moreover, the rate of putrescine uptake in the absence of Ca2+ was similar to that in the absence of extracellular Na+. The results from this study indicate that polyamine transport is stimulated by extracellular Ca2+ and suggest that Ca2+ is required for activity of the Na+-dependent transporter only. This transporter appears to possess a regulatory binding site for divalent cations. (C) 1997 Elsevier Science Ltd.
Resumo:
An isolated rat hindlimb perfusion model carrying xenografts of the human melanoma cell line MM96 was used to study the effects of perfusion conditions on melphalan distribution. Krebs-Henseleit buffer and Hartmann's solution containing 4.7% bovine serum albumin (BSA) or 2.8% dextran 40 were used as perfusates. Melphalan concentrations in perfusate, tumour nodules and normal tissues were measured using high-performance liquid chromatography (HPLC). Increasing the perfusion flow rates (from 4 to 8 mi min(-1)) resulted in higher tissue blood flow (determined with Cr-51-labelled microspheres) and melphalan uptake by tumour and normal tissues. me distribution of melphalan within tumour nodules and normal tissues was similar for both Krebs-Henseleit buffer and Hartmann's solution; however, tissue concentrations of melphalan were significantly higher for a perfusate containing 2.8% dextran 40 than for one containing 4.7% BSA. The melphalan concentration in the tumour was one-third of that found in the skin if the perfusate contained 4.7% BSA. In conclusion, this study has shown that a high perfusion flow enhances the delivery of melphalan into implanted tumour nodules and normal tissues, and a perfusate with low melphalan binding (no albumin) is preferred for maximum uptake of drug by the tumour.
Resumo:
Aims We have characterized the relative dispersion of vascular and extravascular markers in the limbs of three patients undergoing isolated limb perfusions with the cytotoxic melphalan for recurrent malignant melanoma both before and after melphalan dosing. Methods A bolus of injectate containing [Cr-51] labelled red blood cells, [C-14]-sucrose and [H-3]-water was injected into an iliac or femoral artery and outflow samples collected at 1 s intervals by a fraction collector. The radioactivity due to each isotype was analysed by either gamma [Cr-51] or beta [C-14 and H-3] counting. The moments of the outflow fraction-time profiles were estimated by a nonparametric (numerical integration) method and a parametric model (sum of two inverse Gaussian functions). Results The availability, mean transit time and normalised variance (CV2) obtained for labelled red blood cells, sucrose and water were similar before and after melphalan dosing and with the two methods of calculation but varied between the patients. Conclusions The vascular space is not well-stirred but characterized by a CV2 similar that reported previously for in situ rat hind limb and rat liver perfusions. A flow-limited blood-tissue exchange was observed for the permeating indicators. Administration of melphalan did not influence the distribution characteristics of the indicators.
Resumo:
Approximately 50% of all melanoma families worldwide show linkage to 9p21-22, but only about half of these have been shown to contain germ line CDKN2A mutations. It has been hypothesized that a proportion of these families carry mutations in the noncoding regions of CDKN2A. Several Canadian families have been reported to carry a mutation in the 5' UTR, at position -34 relative to the start site, which gives rise to a novel AUG translation initiation codon that markedly decreases translation from the wild-type AUG (Liu et al., 1999). Haplotype sharing in these Canadian families suggested that this mutation is of British origin. We sequenced 1,327 base pairs (bp) of CDKN2A, making up 1,116 bp of the 5' UTR and promoter, all of exon 1, and 61 bp of intron 1, in at least one melanoma case from 110 Australian families with three or more affected members known not to carry mutations within the p16 coding region. In addition, 431 bp upstream of the start codon was sequenced in an additional 253 affected probands from two-case melanoma families for which the CDKN2A mutation status was unknown. Several known polymorphisms at positions -33, -191, -493, and -735 were detected, in addition to four novel variants at positions 120, -252, -347, and -981 relative to the start codon. One of the probands from a two-case family was found to have the previously reported Q50R mutation. No family member was found to carry the mutation at position -34 or any other disease-associated mutation. For further investigation of noncoding CDKN2A mutations that may affect transcription, allele-specific expression analysis was carried out in 31 of the families with at least three affected members who showed either complete or indeterminate 9p haplotype sharing without CDKN2A exonic mutations. Reverse transcription polymerase chain reaction and automated sequencing showed expression of both CDKN2A alleles in all family members tested. The lack of CDKN2A promoter mutations and the absence of transcriptional silencing in the germ line of this cohort of families suggest that mutations in the promoter and 5' UTR play a very limited role in melanoma predisposition. (C) 2001 Wiley-Liss, Inc.
Resumo:
Nude rats bearing melanomas on their hindlimbs were treated by isolated limb infusion (ILI) with increasing doses (7.5-400 mug/ml) of melphalan. The response of tumours to treatment at the end of the observation period was graded, according to diameter, as complete response (CR), partial response (PR), no change (NC) or progressive disease (PD). No linear relationship between the dose of melphalan and the tumour response was observed. All doses above a threshold of 15 mug/ml achieved a PR or CR. The achievement of CR was not related to increased dose. Two major implications arise from this work. Firstly, the typically two-to three-fold increase in cytotoxic drug concentration given in high dose chemotherapy compared with standard drug concentration may not be sufficient to produce the expected increase in tumour response and possibly survival, and the controversial results of high dose chemotherapy in different studies may thus be explained. Secondly, since an increase in melphalan dose above a certain threshold does not greatly increase tumour response, the use of combination therapies would seem to be more likely to be effective than increased chemotherapeutic drug doses in achieving better tumour responses.