12 resultados para buckling
em University of Queensland eSpace - Australia
Resumo:
Lateral-distortional buckling may occur in I-section beams with slender webs and stocky flanges. A computationally efficient method is presented in this paper to study this phenomenon. Previous studies on distortional buckling have been on the use of 3(rd) and 5(th) order polynomials to model the displacements. The present study provides an alternative way, using Fourier Series, to model the behaviour. Beams of different cross-sectional dimensions, load cases and restraint conditions are examined and compared. The accuracy and versatility of the method are verified by calibrating against the results of other published studies. The present method is believed to be a simple and efficient way of determining the buckling load and mode shapes of I-section beams that are susceptible to lateral-distortional buckling modes.
Resumo:
Distortional buckling, unlike the usual lateral-torsional buckling in which the cross-section remains rigid in its own plane, involves distortion of web in the cross-section. This type of buckling typically occurs in beams with slender web and stocky flanges. Most of the published studies assume the web to deform with a cubic shape function. As this assumption may limit the accuracy of the results, a fifth order polynomial is chosen here for the web displacements. The general line-type finite element model used here has two nodes and a maximum of twelve degrees of freedom per node. The model not only can predict the correct coupled mode but also is capable of handling the local buckling of the web.
Resumo:
The contributions of the concrete slab and composite action to the vertical shear strength of continuous steel-concrete composite beams are ignored in current design codes, which result in conservative designs. This paper investigates the ultimate strength of continuous composite beams in combined bending and shear by using the finite element analysis method. A three-dimensional finite element model has been developed to account for the geometric and material nonlinear behaviour of continuous composite beams. The finite element model is verified by experimental results and then used to study the effects of the concrete slab and shear connection on the vertical shear strength. The moment-shear interaction strength of continuous composite beams is also investigated by varying the moment/ shear ratio. It is shown that the concrete slab and composite action significantly increase the ultimate strength of continuous composite beams. Based on numerical results, design models are proposed for the vertical shear strength and moment-shear interaction of continuous composite beams. The proposed design models, which incorporates the effects of the concrete slab, composite action, stud pullout failure and web shear buckling, are compared with experimental results with good agreement. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
The suspen-dome system is a new structural form that has become popular in the construction of long-span roof structures. These domes are very slender and lightweight, their configuration is complicated, and hence sequential consideration in the structural design is needed. This paper focuses on these considerations, which include the method for designing cable prestress force, a simplified analysis method, and the estimation of buckling capacity. Buckling is one of the most important problems for dome structures. This paper presents the findings of an intensive buckling study of the Lamella suspen-dome system that takes geometric imperfection, asymmetric loading, rise-to-span ratio, and connection rigidity into consideration. Finally, suggested design and construction guidelines are given in the conclusion of this paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The metamorphic belt of the Western Alps was subjected to widespread extensional tectonism at the end of the Eocene (ca. 45-35 Ma). Extension was accommodated by hinterland-directed movements along gently inclined extensional shear zones, which facilitated rapid exhumation of high-pressure and ultra-high-pressure rocks. This deformation resulted in a normal metamorphic sequence. Extension in the inner parts of the Western Alps was coeval with shortening at the front of the belt (foreland-directed thrusts), which took place during decompression, and emplaced higher grade metamorphic units over lower grade metamorphic rocks, thus forming an inverse metamorphic sequence. Two mechanisms for this extensional episode are discussed: (1) collapse of an overthickened lithosphere, and (2) internal readjustments within the orogenic wedge due to subduction channel dynamics. We favour the latter mechanism because it can account for the development of the observed inverse and normal metamorphic sequences along foreland-directed thrusts and hinterland-directed detachments, respectively. This hypothesis is supported by published structural, metamorphic and geochronological data from four geological transects through the Western Alps. This study also emphasizes the importance of post-shearing deformation (e.g. horizontal buckling versus vertical flattening), which can modify the distribution of hinterland- and foreland-directed shear zones in orogenic belts. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
Based on Reddy's third-order theory, the first-order theory and the classical theory, exact explicit eigenvalues are found for compression buckling, thermal buckling and vibration of laminated plates via analogy with membrane vibration, These results apply to symmetrically laminated composite plates with transversely isotropic laminae and simply supported polygonal edges, Comprehensive consideration of a Winkler-Pasternak elastic foundation, a hydrostatic inplane force, an initial temperature increment and rotary inertias is incorporated. Bridged by the vibrating membrane, exact correspondences are readily established between any pairs of buckling and vibration eigenvalues associated with different theories. Positive definiteness of the critical hydrostatic pressure at buckling, the thermobukling temperature increment and, in the range of either tension loading or compression loading prior to occurrence of buckling, the natural vibration frequency is proved. (C) 2000 Elsevier Science Ltd. All rights reserved.