249 resultados para boundary integral method
em University of Queensland eSpace - Australia
Resumo:
We propose quadrature rules for the approximation of line integrals possessing logarithmic singularities and show their convergence. In some instances a superconvergence rate is demonstrated.
Resumo:
We have recently developed a scaleable Artificial Boundary Inhomogeneity (ABI) method [Chem. Phys. Lett.366, 390–397 (2002)] based on the utilization of the Lanczos algorithm, and in this work explore an alternative iterative implementation based on the Chebyshev algorithm. Detailed comparisons between the two iterative methods have been made in terms of efficiency as well as convergence behavior. The Lanczos subspace ABI method was also further improved by the use of a simpler three-term backward recursion algorithm to solve the subspace linear system. The two different iterative methods are tested on the model collinear H+H2 reactive state-to-state scattering.
Resumo:
We present an efficient and robust method for the calculation of all S matrix elements (elastic, inelastic, and reactive) over an arbitrary energy range from a single real-symmetric Lanczos recursion. Our new method transforms the fundamental equations associated with Light's artificial boundary inhomogeneity approach [J. Chem. Phys. 102, 3262 (1995)] from the primary representation (original grid or basis representation of the Hamiltonian or its function) into a single tridiagonal Lanczos representation, thereby affording an iterative version of the original algorithm with greatly superior scaling properties. The method has important advantages over existing iterative quantum dynamical scattering methods: (a) the numerically intensive matrix propagation proceeds with real symmetric algebra, which is inherently more stable than its complex symmetric counterpart; (b) no complex absorbing potential or real damping operator is required, saving much of the exterior grid space which is commonly needed to support these operators and also removing the associated parameter dependence. Test calculations are presented for the collinear H+H-2 reaction, revealing excellent performance characteristics. (C) 2004 American Institute of Physics.
Resumo:
This research investigated the galvanic corrosion of the magnesium alloy AZ91D coupled to steel. The galvanic current distribution was measured in 5% NaCl solution, corrosive water and an auto coolant. The experimental measurements were compared with predictions from a Boundary Element Method (BEM) model. The boundary condition, required as an input into the BEM model, needs to be a polarization curve that accurately reflects the corrosion process. Provided that the polarization curve does reflect steady state, the BEM model is expected to be able to reflect steady state galvanic corrosion.
Resumo:
The boundary element method (BEM) was used to study galvanic corrosion using linear and logarithmic boundary conditions. The linear boundary condition was implemented by using the linear approach and the piecewise linear approach. The logarithmic boundary condition was implemented by the piecewise linear approach. The calculated potential and current density distribution were compared with the prior analytical results. For the linear boundary condition, the BEASY program using the linear approach and the piecewise linear approach gave accurate predictions of the potential and the galvanic current density distributions for varied electrolyte conditions, various film thicknesses, various electrolyte conductivities and various area ratio of anode/cathode. The 50-point piecewise linear method could be used with both linear and logarithmic polarization curves.
Resumo:
We present finite element simulations of temperature gradient driven rock alteration and mineralization in fluid saturated porous rock masses. In particular, we explore the significance of production/annihilation terms in the mass balance equations and the dependence of the spatial patterns of rock alteration upon the ratio of the roll over time of large scale convection cells to the relaxation time of the chemical reactions. Special concepts such as the gradient reaction criterion or rock alteration index (RAI) are discussed in light of the present, more general theory. In order to validate the finite element simulation, we derive an analytical solution for the rock alteration index of a benchmark problem on a two-dimensional rectangular domain. Since the geometry and boundary conditions of the benchmark problem can be easily and exactly modelled, the analytical solution is also useful for validating other numerical methods, such as the finite difference method and the boundary element method, when they are used to dear with this kind of problem. Finally, the potential of the theory is illustrated by means of finite element studies related to coupled flow problems in materially homogeneous and inhomogeneous porous rock masses. (C) 1998 Elsevier Science S.A. All rights reserved.
Resumo:
Field studies have shown that the elevation of the beach groundwater table varies with the tide and such variations affect significantly beach erosion or accretion. In this paper, we present a BEM (Boundary Element Method) model for simulating the tidal fluctuation of the beach groundwater table. The model solves the two-dimensional flow equation subject to free and moving boundary conditions, including the seepage dynamics at the beach face. The simulated seepage faces were found to agree with the predictions of a simple model (Turner, 1993). The advantage of the present model is, however, that it can be used with little modification to simulate more complicated cases, e.g., surface recharge from rainfall and drainage in the aquifer may be included (the latter is related to beach dewatering technique). The model also simulated well the field data of Nielsen (1990). In particular, the model replicated three distinct features of local water table fluctuations: steep rising phase versus flat falling phase, amplitude attenuation and phase lagging.
Resumo:
The numerical implementation of the complex image approach for the Green's function of a mixed-potential integralequation formulation is examined and is found to be limited to low values of k(0) rho (in this context k(0) rho = 2 pirho/ lambda(0), where rho is the distance between the source and the field points of the Green's function and lambda(0) is the free space wavelength). This is a clear limitation for problems of large dimension or high frequency where this limit is easily exceeded. This paper examines the various strategies and proposes a hybrid method whereby most of the above problems can be avoided. An efficient integral method that is valid for large k(0) rho is combined with the complex image method in order to take advantage of the relative merits of both schemes. It is found that a wide overlapping region exists between the two techniques allowing a very efficient and consistent approach for accurately calculating the Green's functions. In this paper, the method developed for the computation of the Green's function is used for planar structures containing both lossless and lossy media.
Resumo:
A method is presented for calculating the winding patterns required to design independent zonal and tesseral biplanar shim coils for magnetic resonance imaging. Streamline, target-field, Fourier integral and Fourier series methods are utilized. For both Fourier-based methods, the desired target field is specified on the surface of the conducting plates. For the Fourier series method it is possible to specify the target field at additional depths interior to the two conducting plates. The conducting plates are confined symmetrically in the xy plane with dimensions 2a x 2b, and are separated by 2d in the z direction. The specification of the target field is symmetric for the Fourier integral method, but can be over some asymmetric portion pa < x < qa and sb < y < tb of the coil dimensions (-1 < p < q < 1 and -1 < s < t < 1) for the Fourier series method. Arbitrary functions are used in the outer sections to ensure continuity of the magnetic field across the entire coil face. For the Fourier series case, the entire field is periodically extended as double half-range sine or cosine series. The resultant Fourier coefficients are substituted into the Fourier series and integral expressions for the internal and external magnetic fields, and stream functions on both the conducting surfaces. A contour plot of the stream function directly gives the required coil winding patterns. Spherical harmonic analysis of field calculations from a ZX shim coil indicates that example designs and theory are well matched.
Resumo:
Complementing our recent work on subspace wavepacket propagation [Chem. Phys. Lett. 336 (2001) 149], we introduce a Lanczos-based implementation of the Faber polynomial quantum long-time propagator. The original version [J. Chem. Phys. 101 (1994) 10493] implicitly handles non-Hermitian Hamiltonians, that is, those perturbed by imaginary absorbing potentials to handle unwanted reflection effects. However, like many wavepacket propagation schemes, it encounters a bottleneck associated with dense matrix-vector multiplications. Our implementation seeks to reduce the quantity of such costly operations without sacrificing numerical accuracy. For some benchmark scattering problems, our approach compares favourably with the original. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
We give a selective review of quantum mechanical methods for calculating and characterizing resonances in small molecular systems, with an emphasis on recent progress in Chebyshev and Lanczos iterative methods. Two archetypal molecular systems are discussed: isolated resonances in HCO, which exhibit regular mode and state specificity, and overlapping resonances in strongly bound HO2, which exhibit irregular and chaotic behavior. Recent progresses for non-zero total angular momentum J calculations of resonances including parallel computing models are also included and future directions in this field are discussed.
Resumo:
The galvanic corrosion of magnesium alloy AZ91D coupled to a steel fastener was studied using a boundary element method (BEM) model and experimental measurements. The BEM model used the measured polarization curves as boundary conditions. The experimental program involved measuring the total corrosion rate as a function of distance from the interface of the magnesium in the form of a sheet containing a mild steel circular insert (5 to 30 mm in diameter). The measured total corrosion rate was interpreted as due to galvanic corrosion plus self corrosion. For a typical case, the self corrosion was estimated typically to be similar to 230 mm/y for an area surrounding the interface and to a distance of about I cm from the interface. Scanning Kelvin Probe Force Microscopy (SKPFM) revealed microgalvanic cells with potential differences of approximately 100 mV across the AZ91D surface. These microgalvanic cells may influence the relative contributions of galvanic and self corrosion to the total corrosion of AZ91D.
Resumo:
The influence of geometric factors on the galvanic current density distribution for AZ91D coupled to steel was investigated using experimental measurements and a BEM model. The geometric factors were area ratio of anode/cathode, insulation distance between anode and cathode, depth of solution film covering the galvanic couple and the manner of interaction caused by two independent interacting galvanic couples. The galvanic current density distribution calculated from the BEM model was in good agreement with the experimental measurements. The galvanic current density distribution caused by the interaction of two independent galvanic couples can be reasonably predicted as the linear addition of the galvanic current density caused by each individual galvanic couple. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
-scale vary from a planetary scale and million years for convection problems to 100km and 10 years for fault systems simulations. Various techniques are in use to deal with the time dependency (e.g. Crank-Nicholson), with the non-linearity (e.g. Newton-Raphson) and weakly coupled equations (e.g. non-linear Gauss-Seidel). Besides these high-level solution algorithms discretization methods (e.g. finite element method (FEM), boundary element method (BEM)) are used to deal with spatial derivatives. Typically, large-scale, three dimensional meshes are required to resolve geometrical complexity (e.g. in the case of fault systems) or features in the solution (e.g. in mantel convection simulations). The modelling environment escript allows the rapid implementation of new physics as required for the development of simulation codes in earth sciences. Its main object is to provide a programming language, where the user can define new models and rapidly develop high-level solution algorithms. The current implementation is linked with the finite element package finley as a PDE solver. However, the design is open and other discretization technologies such as finite differences and boundary element methods could be included. escript is implemented as an extension of the interactive programming environment python (see www.python.org). Key concepts introduced are Data objects, which are holding values on nodes or elements of the finite element mesh, and linearPDE objects, which are defining linear partial differential equations to be solved by the underlying discretization technology. In this paper we will show the basic concepts of escript and will show how escript is used to implement a simulation code for interacting fault systems. We will show some results of large-scale, parallel simulations on an SGI Altix system. Acknowledgements: Project work is supported by Australian Commonwealth Government through the Australian Computational Earth Systems Simulator Major National Research Facility, Queensland State Government Smart State Research Facility Fund, The University of Queensland and SGI.
Resumo:
A modified formula for the integral transform of a nonlinear function is proposed for a class of nonlinear boundary value problems. The technique presented in this paper results in analytical solutions. Iterations and initial guess, which are needed in other techniques, are not required in this novel technique. The analytical solutions are found to agree surprisingly well with the numerically exact solutions for two examples of power law reaction and Langmuir-Hinshelwood reaction in a catalyst pellet.