73 resultados para bloqueador neuromuscular
em University of Queensland eSpace - Australia
Resumo:
The embryonic period of motoneuron programmed cell death (PCD) is marked by transient motor axon branching, but the role of neuromuscular synapses in regulating motoneuron number and axonal branching is not known. Here, we test whether neuromuscular synapses are required for the quantitative association between reduced skeletal muscle contraction, increased motor neurite branching, and increased motoneuron survival. We achieved this by comparing agrin and rapsyn mutant mice that lack acetylcholine receptor (AChR) clusters. There were significant reductions in nerve-evoked skeletal muscle contraction, increases in intramuscular axonal branching, and increases in spinal motoneuron survival in agrin and rapsyn mutant mice compared with their wild-type littermates at embryonic day 18.5 (E18.5). The maximum nerve-evoked skeletal muscle contraction was reduced a further 17% in agrin mutants than in rapsyn mutants. This correlated to an increase in motor axon branch extension and number that was 38% more in agrin mutants than in rapsyn mutants. This suggests that specializations of the neuromuscular synapse that ensure efficient synaptic transmission and muscle contraction are also vital mediators of motor axon branching. However, these increases in motor axon branching did not correlate with increases in motoneuron survival when comparing agrin and rapsyn mutants. Thus, agrin-induced synaptic specializations are required for skeletal muscle to effectively control motoneuron numbers during embryonic development. (C) 2003 Elsevier Science (USA). All rights reserved.
Resumo:
Purpose: This study compared the neuromuscular efficiency (NME) of the sternocleidomastoid (SCM) and anterior scalene (AS) muscles between 20 chronic neck pain patients and 20 asymptomatic controls. Method: Myoelectric signals were recorded from the sternal head of SCM and the AS muscles as subjects performed sub-maximal isometric cervical flexion contractions at 25 and 50% of the maximum voluntary contraction (MVC). The NME was calculated as the ratio between MVC and the corresponding average rectified value of the EMG signal. Ultrasonography was used to measure subcutaneous tissue thickness over the SCM and AS to ensure that differences did not exist between groups. Results: For both the SCM and AS muscles, NME was shown to be significantly reduced in patients with neck pain at 25% MVC (p < 0.05). Subcutaneous tissue thickness over the SCM and AS muscles was not different between groups. Conclusions: Reduced NME in the superficial cervical flexor muscles in patients with neck pain may be a measurable altered muscle strategy for dysfunction in other muscles. This aberrant pattern of muscle activation appears to be most evident under conditions of low load. NME, when measured at 25% MVC, may be a useful objective measure for future investigation of muscle dysfunction in patients with neck pain.
Resumo:
The muscle isoform. of clathrin heavy chain, CHC22, has 85% sequence identity to the ubiquitously expressed CHC17, yet its expression pattern and function appear to be distinct from those of well-characterized clathrin-coated vesicles. In mature muscle CHC22 is preferentially concentrated at neuromuscular and myotendinous junctions, suggesting a role at sarcolemmal contacts with extracellular matrix. During myoblast differentiation, CHC22 expression is increased, initially localized with desmin and nestin and then preferentially segregated to the poles of fused myoblasts. CHC22 expression is also increased in regenerating muscle fibers with the same time course as embryonic myosin, indicating a role in muscle repair. CHC22 binds to sorting nexin 5 through a coiled-coil domain present in both partners, which is absent in CHC17 and coincides with the region on CHC17 that binds the regulatory light-chain subunit. These differential binding data suggest a mechanism for the distinct functions of CHC22 relative to CHC17 in membrane traffic during muscle development, repair, and at neuromuscular and myotendinous junctions.
Resumo:
In this study we attempted to identify the principles that govern the changes in neural control that occur during repeated performance of a multiarticular coordination task. Eight participants produced isometric flexion/extension and pronation/supination torques at the radiohumeral joint, either in isolation (e.g., flexion) or in combination (e.g., flexion - supination), to acquire targets presented by a visual display. A cursor superimposed on the display provided feedback of the applied torques. During pre- and postpractice tests, the participants acquired targets in eight directions located either 3.6 cm (20% maximal voluntary contraction [MVC]) or 7.2 cm (40% MVC) from a neutral cursor position. On each of five consecutive days of practice the participants acquired targets located 5.4 cm (30% MVC) from the neutral position. EMG was recorded from eight muscles contributing to torque production about the radiohumeral joint during the pre- and posttests. Target-acquisition time decreased significantly with practice in most target directions and at both target torque levels. These performance improvements were primarily associated with increases in the peak rate of torque development after practice. At a muscular level, these changes were brought about by increases in the rates of recruitment of all agonist muscles. The spatiotemporal organization of muscle synergies was not significantly altered after practice. The observed adaptations appear to lead to performances that are generalizable to actions that require both greater and smaller joint torques than that practiced, and may be successfully recalled after a substantial period without practice. These results suggest that tasks in which performance is improved by increasing the rate of muscle activation, and thus the rate of joint torque development, may benefit in terms of the extent to which acquired levels of performance are maintained over time.
Resumo:
In this experiment, we examined the extent to which the spatiotemporal reorganization of muscle synergies mediates skill acquisition on a two degree-of-freedom (df) target-acquisition task. Eight participants completed five practice sessions on consecutive days. During each session they practiced movements to eight target positions presented by a visual display. The movements required combinations of flexion/extension and pronation/supination of the elbow joint complex. During practice sessions, eight targets displaced 5.4 cm from the start position ( representing joint excursions of 54) were presented 16 times. During pre- and posttests, participants acquired the targets at two distances (3.6 cm [36 degrees] and 7.2 cm [72 degrees]). EMG data were recorded from eight muscles contributing to the movements during the pre- and posttests. Most targets were acquired more rapidly after the practice period. Performance improvements were, in most target directions, accompanied by increases in the smoothness of the movement trajectories. When target acquisition required movement in both dfs, there were also practice-related decreases in the extent to which the trajectories deviated from a direct path to the target. The contribution of monofunctional muscles ( those producing torque in a single df) increased with practice during movements in which they acted as agonists. The activity in bifunctional muscles ( those contributing torque in both dfs) remained at pretest levels in most movements. The results suggest that performance gains were mediated primarily by changes in the spatial organization of muscles synergies. These changes were expressed most prominently in terms of the magnitude of activation of the monofunctional muscles.
Resumo:
The organisation of the human neuromuscular-skeletal system allows an extremely wide variety of actions to be performed, often with great dexterity. Adaptations associated with skill acquisition occur at all levels of the neuromuscular-skeletal system although all neural adaptations are inevitably constrained by the organisation of the actuating apparatus (muscles and bones). We quantified the extent to which skill acquisition in an isometric task set is influenced by the mechanical properties of the muscles used to produce the required actions. Initial performance was greatly dependent upon the specific combination of torques required in each variant of the experimental task. Five consecutive days of practice improved the performance to a similar degree across eight actions despite differences in the torques required about the elbow and forearm. The proportional improvement in performance was also similar when the actions were performed at either 20 or 40% of participants' maximum voluntary torque capacity. The skill acquired during practice was successfully extrapolated to variants of the task requiring more torque than that required during practice. We conclude that while the extent to which skill can be acquired in isometric actions is independent of the specific combination of joint torques required for target acquisition, the nature of the kinetic adaptations leading to the performance improvement in isometric actions is influenced by the neural and mechanical properties of the actuating muscles.
Resumo:
The authors tested for predominant patterns of coordination in the combination of rhythmic flexion-extension (FE) and supination-pronation (SP) at the elbow-joint complex. Participants (N = 10) spontaneously established in-phase (supination synchronized with flexion) and antiphase (pronation synchronized with flexion) patterns. In addition, the authors used a motorized robot arm to generate involuntary SP movements with different phase relations with respect to voluntary FE. The involuntarily induced in-phase pattern was accentuated and was more consistent than other patterns. That result provides evidence that the predominance of the in-phase pattern originates in the influence of neuro-muscular-skeletal constraints rather than in a preference dictated by perceptual-cognitive factors implicated in voluntary control. Neuromuscular-skeletal constraints involved in the predominance of the in-phase and the antiphase patterns are discussed.
Resumo:
The purpose of this study was to examine the effects of different methods of measuring training volume, controlled in different ways, on selected variables that reflect acute neuromuscular responses. Eighteen resistance-trained males performed three fatiguing protocols of dynamic constant external resistance exercise, involving elbow flexors, that manipulated either time-under-tension (TUT) or volume load (VL), defined as the product of training load and repetitions. Protocol A provided a standard for TUT and VL. Protocol B involved the same VL as Protocol A but only 40% concentric TUT; Protocol C was equated to Protocol A for TUT but only involved 50% VL. Fatigue was assessed by changes in maximum voluntary isometric contraction (MVIC), interpolated doublet (ID), muscle twitch characteristics (peak twitch, time to peak twitch, 0.5 relaxation time, and mean rates of force development and twitch relaxation). All protocols produced significant changes (P
Resumo:
Previous research has shown that the postural configuration adopted by a subject, such as active leaning, influences the postural response to an unpredictable support surface translation. While those studies have examined large differences in postural conditions, it is of additional interest to examine the effects of naturally occurring changes in standing posture. Thus, it was hypothesized that the normal postural sway observed during quiet standing would affect the responses to an unpredictable support surface translation. Seventeen young adults stood quietly on a moveable platform and were perturbed in either the forward or backward direction when the location of the center of pressure (COP) was either 1.5 standard deviations anterior or posterior to the mean baseline COP signal. Postural responses, in the form of electromyographic (EMG) latencies and amplitudes, were recorded from lower limb and trunk muscles. When the location of the COP at the time of the translation was in the opposite, as compared to the same, direction as the upcoming translation, there was a significantly earlier onset of the antagonists (10-23%, i.e. 15-45 ms) and a greater EMG amplitude (14-39%) in four of the six recorded muscles. Stepping responses were most frequently observed during trials where the position of the COP was opposite to the direction of the translation. The results support the hypothesis that postural responses to unpredictable support surface translations are influenced by the normal movements of postural sway. The results may help to explain the large variability of postural responses found between past studies.
Resumo:
Proprioceptive neuromuscular facilitation (PNF) stretching techniques are commonly used in the athletic and clinical environments to enhance both active and passive range of motion (ROM) with a view to optimising motor performance and rehabilitation. PNF stretching is positioned in the literature as the most effective stretching technique when the aim is to increase ROM, particularly in respect to short-term changes in ROM. With due consideration of the heterogeneity across the applied PNF stretching research, a summary of the findings suggests that an 'active' PNF stretching technique achieves the greatest gains in ROM, e.g. utilising a shortening contraction of the opposing muscle to place the target muscle on stretch, followed by a static contraction of the target muscle. The inclusion of a shortening contraction of the opposing muscle appears to have the greatest impact on enhancing ROM. When including a static contraction of the target muscle, this needs to be held for approximately 3 seconds at no more than 20% of a maximum voluntary contraction. The greatest changes in ROM generally occur after the first repetition and in order to achieve more lasting changes in ROM, PNF stretching needs to be performed once or twice per week. The superior changes in ROM that PNF stretching often produces compared with other stretching techniques has traditionally been attributed to autogenic and/or reciprocal inhibition, although the literature does not support this hypothesis. Instead, and in the absence of a biomechanical explanation, the contemporary view proposes that PNF stretching influences the point at which stretch is perceived or tolerated. The mechanism(s) underpinning the change in stretch perception or tolerance are not known, although pain modulation has been suggested.
Resumo:
Agrin is a proteoglycan secreted by motor neurite terminals that functions to initiate and maintain AChR clusters at the nerve terminal. This led to the theory that neurite terminals decide where neuromuscular synapses form by secreting agrin. However, initiation of AChR clustering occurs in the absence of the innervating motoneuron and in the absence of agrin. In this instance, the muscle, not the nerve, is deciding the location of neuromuscular synapses by drawing neurite terminals towards pre-existing AChR clusters. If this were true, one would expect the initial innervation patterns to be the same in agrin-deficient mice and wild-type mice. To test this we quantified the intramuscular axonal branching and synapse formation in the diaphragm at E14.5 in agrin-deficient mice and wild-type mice. Heterozygote mothers were anaesthetised with Nembutal (30 mg) and killed via cervical dislocation. In the diaphragm, the nerve trunk runs down the centre of the muscle and extends branches primarily toward the lateral side. In agrin-deficient mice however, we found significantly more branches exited the phrenic nerve trunk, branched in the periphery and extended further on the medial side. Moreover, we found that the percentage α-bungarotoxin/synaptophysin colocalisations, markers of pre- and postsynaptic differentiation, respectively, was the same in agrin-deficient mice and wild-type mice. These results show that initial innervation patterns are not the same in agrin-deficient mice and wild-type mice indicating neurite terminals, not muscle, decide the placement of neuromuscular synapses in the absence of agrin.