4 resultados para biosciences
em University of Queensland eSpace - Australia
Resumo:
Integrating information in the molecular biosciences involves more than the cross-referencing of sequences or structures. Experimental protocols, results of computational analyses, annotations and links to relevant literature form integral parts of this information, and impart meaning to sequence or structure. In this review, we examine some existing approaches to integrating information in the molecular biosciences. We consider not only technical issues concerning the integration of heterogeneous data sources and the corresponding semantic implications, but also the integration of analytical results. Within the broad range of strategies for integration of data and information, we distinguish between platforms and developments. We discuss two current platforms and six current developments, and identify what we believe to be their strengths and limitations. We identify key unsolved problems in integrating information in the molecular biosciences, and discuss possible strategies for addressing them including semantic integration using ontologies, XML as a data model, and graphical user interfaces as integrative environments.
Resumo:
Historians of genetics agree that multiple conceptions of the gene have coexisted at each stages in the history of genetics and that the resulting partial ambiguity has often contributed to the success of genetics, both because workers in different areas have needed to communicate and to draw on one another’s results despite wrestled with very different scientific challenges, and because empirical findings have often challenged the presuppositions of existing conceptions of the gene. Today, a number of different conceptions of the gene coexist in the biosciences. An ‘instrumental’ gene similar to that of classical genetics retains a critical role in the construction and interpretation of experiments in which the relationship between genotype and phenotype is explored via hybridization between organisms or directly between nucleic acid molecules. It also plays an important theoretical role in the foundations of disciplines such as quantitative genetics and population genetics. A ‘nominal’ gene, defined by the practice of genetic nomenclature, is a critical practical tool and allows communication between bioscientists in a wide range of fields to be grounded in welldefined sequences of nucleotides. This concept, however, does not embody major theoretical insights into genome structure or function. Instead, a ‘post-genomic’ conception of the gene embodies the continuing project of understanding how genome structure supports genome function, but with a deflationary picture of the gene as a structural unit. This final concept of the gene poses a significant challenge to earlier assumptions about the relationship between genome structure and function, and between genotype and phenotype.