18 resultados para biophysical throughput

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extensive in-situ testings has shown that blast fragmentation influences the performance of downstream processes in a mine, and as a consequence, the profit of the whole operation can be greatly improved through optimised fragmentation. Other unit operations like excavation, crushing and grinding can all be assisted by altering the blast-induced fragmentation. Experimental studies have indicated that a change in blasting practice would not only influence fragmentation but fragment strength as well. The strength of the fragments produced in a blast is clearly important to the performance of the crushing and grinding circuit as it affects the energy required to break the feed to a target product size. In order to validate the effect of blasting on fragment strength several lumps of granite were blasted, under controlled conditions, using three very different explosive products. The resulting fragments were subjected to standard comminution ore characterisation tests. Obtained comminution parameters were then used to simulate the performance of a SAG mill. Modelling results indicate that changes in post blast residual rock fragment strength significantly influences the performance of the SAG mill, producing up to a 20% increase in throughput. (c) 2004 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a significant clinical need to identify novel ligands with high selectivity and potency for GABA(A), GABA(C) and glycine receptor Cl- channels. Two recently developed, yellow fluorescent protein variants (YFP-I152L and YFP-V163S) are highly sensitive to quench by small anions and are thus suited to reporting anionic influx into cells. The aim of this study was to establish the optimal conditions for using these constructs for high-throughput screening of GABA(A), GABA(C) and glycine receptors transiently expressed in HEK293 cells. We found that a 70% fluorescence reduction was achieved by quenching YFP-I152L with a 10 s influx of I- ions, driven by an extemal I- concentration of at least 50 mM. The fluorescence quench was rapid, with a mean time constant of 3 s. These responses were similar for all anion receptor types studied. We also show the assay is sufficiently sensitive to measure agonist and antagonist concentration-responses using either imaging- or photomultiplier-based detection systems. The robustness, sensitivity and low cost of this assay render it suited for high-throughput screening of transiently expressed anionic ligand-gated channels. (c) 2005 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent discoveries of different modes of exocytosis and a plethora of molecules involved in neurotransmitter release has resulted in demand for more rapid and efficient methods for monitoring endogenous glutamate release from various tissue sources. In this article, we describe a high throughput microplate version of the enzyme-linked fluorescence detection method for the measurement of released glutamate, which utilises glutamate dehydrogenase, and the reduction of NADP to NADPH. Previous versions of this method rely upon cuvette-based fluorimeters for detection that are limited by large sample volumes and small numbers of samples that can be measured simultaneously. Comparison between the two methods shows that the microplate assay has comparable performance to the cuvette-based assay but has the capacity to analyse many times more samples in a given run. This increased capacity provides improved experimental design opportunities, higher experimental throughput and better comparison between experimental conditions. (c) 2005 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador: