21 resultados para biophotons, squeezed light, nonclassical states
em University of Queensland eSpace - Australia
Resumo:
We analyse the relation between local two-atom and total multi-atom entanglements in the Dicke system composed of a large number of atoms. We use concurrence as a measure of entanglement between two atoms in the multi-atom system, and the spin squeezing parameter as a measure of entanglement in the whole n-atom system. In addition, the influence of the squeezing phase and bandwidth on entanglement in the steady-state Dicke system is discussed. It is shown that the introduction of a squeezed field leads to a significant enhancement of entanglement between two atoms, and the entanglement increases with increasing degree of squeezing and bandwidth of the incident squeezed field. In the presence of a coherent field the entanglement exhibits a strong dependence on the relative phase between the squeezed and coherent fields, that can jump quite rapidly from unentangled to strongly entangled values when the phase changes from zero to pi. We find that the jump of the degree of entanglement is due to a flip of the spin squeezing from one quadrature component of the atomic spin to the other component when the phase changes from zero to pi. We also analyse the dependence of the entanglement on the number of atoms and find that, despite the reduction in the degree of entanglement between two atoms, a large entanglement is present in the whole n-atom system and the degree of entanglement increases as the number of atoms increases.
Resumo:
We present an experimental analysis of quadrature entanglement produced from a pair of amplitude squeezed beams. The correlation matrix of the state is characterized within a set of reasonable assumptions, and the strength of the entanglement is gauged using measures of the degree of inseparability and the degree of Einstein-Podolsky-Rosen (EPR) paradox. We introduce controlled decoherence in the form of optical loss to the entangled state, and demonstrate qualitative differences in the response of the degrees of inseparability and EPR paradox to this loss. The entanglement is represented on a photon number diagram that provides an intuitive and physically relevant description of the state. We calculate efficacy contours for several quantum information protocols on this diagram, and use them to predict the effectiveness of our entanglement in those protocols.
Resumo:
This paper discusses methods for the optical teleportation of continuous-variable polarization states. We show that using two pairs of entangled beams, generated using four squeezed beams, perfect teleportation of optical polarization states can be performed. Restricting ourselves to three squeezed beams, we demonstrate that polarization state teleportation can still exceed the classical limit. The three-squeezer schemes involve either the use of quantum nondemolition measurement or biased entanglement generated from a single squeezed beam. We analyze the efficacies of these schemes in terms of fidelity, signal transfer coefficients, and quantum correlations.
Resumo:
We describe a generalization of the cluster-state model of quantum computation to continuous-variable systems, along with a proposal for an optical implementation using squeezed-light sources, linear optics, and homodyne detection. For universal quantum computation, a nonlinear element is required. This can be satisfied by adding to the toolbox any single-mode non-Gaussian measurement, while the initial cluster state itself remains Gaussian. Homodyne detection alone suffices to perform an arbitrary multimode Gaussian transformation via the cluster state. We also propose an experiment to demonstrate cluster-based error reduction when implementing Gaussian operations.
Resumo:
We show that two evanescently coupled χ((2)) parametric down-converters inside a Fabry-Perot cavity provide a tunable source of quadrature squeezed light, Einstein-Podolsky-Rosen (EPR) correlations and quantum entanglement. Analyzing the operation in the below threshold regime, we show how these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources.
Resumo:
We show that two evanescently coupled chi((2)) parametric oscillators provide a tunable bright source of quadrature squeezed light, Einstein-Podolsky-Rosen correlations and quantum entanglement. Analysing the system in the above threshold regime, we demonstrate that these properties can be controlled by adjusting the coupling strengths and the cavity detunings. As this can be implemented with integrated optics, it provides a possible route to rugged and stable EPR sources. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulae describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system; in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.
Resumo:
We prove that a pure entangled state of two subsystems with equal spin is equivalent to a two-mode spin-squeezed state under local operations except for a set of bipartite states with measure zero, and provide a counterexample to the generalization of this result to two subsystems of unequal spin.
Resumo:
We investigate an optical scheme to conditionally engineer quantum states using a beam splitter, homodyne detection, and a squeezed vacuum as an ancillar state. This scheme is efficient in producing non-Gaussian quantum states such as squeezed single photons and superpositions of coherent states (SCSs). We show that a SCS with well defined parity and high fidelity can be generated from a Fock state of n
Resumo:
We present several examples where prominent quantum properties are transferred from a microscopic superposition to thermal states at high temperatures. Our work is motivated by an analogy of Schrodinger's cat paradox, where the state corresponding to the virtual cat is a mixed thermal state with a large average photon number. Remarkably, quantum entanglement can be produced between thermal states with nearly the maximum Bell-inequality violation even when the temperatures of both modes approach infinity.
Resumo:
We analyse the relation between the entanglement and spin-squeezing parameter in the two-atom Dicke model and identify the source of the discrepancy recently reported by Banerjee (2001 Preprint quant-ph/0110032) and Zhou et al (2002 J. Opt. B. Quantum Semiclass. Opt. 4 425), namely that one can observe entanglement without spin squeezing. Our calculations demonstrate that there are two criteria for entanglement, one associated with the two-photon coherences that create two-photon entangled states, and the other associated with populations of the collective states. We find that the spin-squeezing parameter correctly predicts entanglement in the two-atom Dicke system only if it is associated with two-photon entangled states, but fails to predict entanglement when it is associated with the entangled symmetric state. This explicitly identifies the source of the discrepancy and explains why the system can be entangled without spin squeezing. We illustrate these findings with three examples of the interaction of the system with thermal, classical squeezed vacuum, and quantum squeezed vacuum fields.
Resumo:
We consider the task of estimating the randomly fluctuating phase of a continuous-wave beam of light. Using the theory of quantum parameter estimation, we show that this can be done more accurately when feedback is used (adaptive phase estimation) than by any scheme not involving feedback (nonadaptive phase estimation) in which the beam is measured as it arrives at the detector. Such schemes not involving feedback include all those based on heterodyne detection or instantaneous canonical phase measurements. We also demonstrate that the superior accuracy of adaptive phase estimation is present in a regime conducive to observing it experimentally.
Resumo:
We present a fully quantum mechanical treatment of the nondegenerate optical parametric oscillator both below and near threshold. This is a nonequilibrium quantum system with a critical point phase transition, that is also known to exhibit strong yet easily observed squeezing and quantum entanglement. Our treatment makes use of the positive P representation and goes beyond the usual linearized theory. We compare our analytical results with numerical simulations and find excellent agreement. We also carry out a detailed comparison of our results with those obtained from stochastic electrodynamics, a theory obtained by truncating the equation of motion for the Wigner function, with a view to locating regions of agreement and disagreement between the two. We calculate commonly used measures of quantum behavior including entanglement, squeezing, and Einstein-Podolsky-Rosen (EPR) correlations as well as higher order tripartite correlations, and show how these are modified as the critical point is approached. These results are compared with those obtained using two degenerate parametric oscillators, and we find that in the near-critical region the nondegenerate oscillator has stronger EPR correlations. In general, the critical fluctuations represent an ultimate limit to the possible entanglement that can be achieved in a nondegenerate parametric oscillator.
Resumo:
We suggest a scheme to generate a macroscopic superposition state (Schrodinger cat state) of a free-propagating optical field using a beam splitter, homodyne measurement, and a very small Kerr nonlinear effect. Our scheme makes it possible to reduce considerably the required nonlinear effect to generate an optical cat state using simple and efficient optical elements.
Resumo:
Quantum optics experiments on bright beams are based on the spectral analysis of field fluctuations and typically probe correlations between radio-frequency sideband modes. However, the extra degree of freedom represented by this dual-mode picture is generally ignored. We demonstrate the experimental operation of a device which can be used to separate the quantum sidebands of an optical field. We use this device to explicitly demonstrate the quantum entanglement between the sidebands of a squeezed beam.