2 resultados para bio-engineering

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple frequency bio-electrical impedance analysis (MFBIA) may be useful for monitoring fluid balance in newborn infants or to provide early prediction of the outcome following perinatal asphyxia. A reference range of data is needed for identification of babies with abnormal impedance values. This was a cross-sectional observational study in 84 term and near-term healthy neonates less than 12 h postpartum. Whole body and cerebral MFBIA measurements were performed at the bedside in the post-natal ward. Gestational age, post-natal age, gender, birthweight, head circumference and foot length measures were recorded. Reference values for impedance at the characteristic frequency (Z(C)) and resistance at zero frequency (R-0) are reported for whole body and cerebral impedance. Significant correlations (p < 0.05) were observed between whole body impedance and birthweight, footlength and head circumference. Females had a significantly higher whole body R0 than males. Cerebral impedance did not correlate significantly with any of the demographic measures and therewere no gender differences observed for cerebral impedance. The reference range for whole body multi-frequency bio-impedance values in term and near-term infants within the first 12 h postpartum can be calculated from the footlength (FL) using the following equations: Z(C) = (942.9 - 4.818* FL) +/- 124.6 Omega; R-0 = (1042 - 4.520(*)FL) +/- 135.5 Omega. For cerebral impedance the reference range is 29.5-48.7 Omega for Z(C) and 33.7-58.0 Omega for R-0.