4 resultados para binocular vision

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Grove, Gillam, and Ono [Grove, P. M., Gillam, B. J., & Ono, H. (2002). Content and context. of monocular regions determine perceived depth in random dot, unpaired background and phantom stereograms. Vision Research, 42, 1859-1870] reported that perceived depth in monocular gap stereograms [Gillam, B. J., Blackburn, S., & Nakayama, K. (1999). Stereopsis based on monocular gaps: Metrical encoding of depth and slant without matching contours. Vision Research, 39, 493-502] was attenuated when the color/texture in the monocular gap did not match the background. It appears that continuation of the gap with the background constitutes an important component of the stimulus conditions that allow a monocular gap in an otherwise binocular surface to be responded to as a depth step. In this report we tested this view using the conventional monocular gap stimulus of two identical grey rectangles separated by a gap in one eye but abutting to form a solid grey rectangle in the other. We compared depth seen at the gap for this stimulus with stimuli that were identical except for two additional small black squares placed at the ends of the gap. If the squares were placed stereoscopically behind the rectangle/gap configuration (appearing on the background) they interfered with the perceived depth at the gap. However when they were placed in front of the configuration this attenuation disappeared. The gap and the background were able under these conditions to complete amodally. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently Hupe and Rubin (2003, Vision Research 43 531 - 548) re-introduced the plaid as a form of perceptual rivalry by using two sets of drifting gratings behind a circular aperture to produce quasi-regular perceptual alternations between a coherent moving plaid of diamond-shaped intersections and the two sets of component 'sliding' gratings. We call this phenomenon plaid motion rivalry (PMR), and have compared its temporal dynamics with those of binocular rivalry in a sample of subjects covering a wide range of perceptual alternation rates. In support of the proposal that all rivalries may be mediated by a common switching mechanism, we found a high correlation between alternation rates induced by PMR and binocular rivalry. In keeping with a link discovered between the phase of rivalry and mood, we also found a link between PMR and an individual's mood state that is consistent with suggestions that each opposing phase of rivalry is associated with one or the other hemisphere, with the 'diamonds' phase of PMR linked with the 'positive' left hemisphere.