263 resultados para binding theory
em University of Queensland eSpace - Australia
Resumo:
A simple theoretical framework is presented for bioassay studies using three component in vitro systems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an Ii-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein to in vitro systems. The algorithm is tested by application to a published data set from an experimental study in an in vitro system (Lim et al., 1990, Endocrinology 127, 1287-1291). Predicted changes show good agreement (within 8%) with experimental observations. (C) 1998 Academic Press Limited.
Resumo:
Density functional theory (DFT) is a powerful approach to electronic structure calculations in extended systems, but suffers currently from inadequate incorporation of long-range dispersion, or Van der Waals (VdW) interactions. VdW-corrected DFT is tested for interactions involving molecular hydrogen, graphite, single-walled carbon nanotubes (SWCNTs), and SWCNT bundles. The energy correction, based on an empirical London dispersion term with a damping function at short range, allows a reasonable physisorption energy and equilibrium distance to be obtained for H-2 on a model graphite surface. The VdW-corrected DFT calculation for an (8, 8) nanotube bundle reproduces accurately the experimental lattice constant. For H-2 inside or outside an (8, 8) SWCNT, we find the binding energies are respectively higher and lower than that on a graphite surface, correctly predicting the well known curvature effect. We conclude that the VdW correction is a very effective method for implementing DFT calculations, allowing a reliable description of both short-range chemical bonding and long-range dispersive interactions. The method will find powerful applications in areas of SWCNT research where empirical potential functions either have not been developed, or do not capture the necessary range of both dispersion and bonding interactions.
Resumo:
Attention is drawn to a need for caution in the determination of binding data for protein-polyelectrolyte interactions by frontal analysis continuous capillary electrophoresis (FACCE). Because the method is valid only for systems involving comigration of complex(es) and slower-migrating reactant, establishing conformity with that condition is clearly a prerequisite for its application. However, that requirement has not been tested in any published studies thus far. On the basis of calculated FACCE patterns, presented to illustrate features by which such comigration of complex(es) and slower-migrating reactant can be identified, the form of the published pattern for a P-lactoglobulin-poly(styrenesulfonate) mixture does not seem to signify the migration behavior required to justify its consideration in such terms. Additional experimental studies are therefore needed to ascertain the validity of FACCE as a means of determining binding data for the characterization of protein-polyelectrolyte interactions. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Machine learning techniques have been recognized as powerful tools for learning from data. One of the most popular learning techniques, the Back-Propagation (BP) Artificial Neural Networks, can be used as a computer model to predict peptides binding to the Human Leukocyte Antigens (HLA). The major advantage of computational screening is that it reduces the number of wet-lab experiments that need to be performed, significantly reducing the cost and time. A recently developed method, Extreme Learning Machine (ELM), which has superior properties over BP has been investigated to accomplish such tasks. In our work, we found that the ELM is as good as, if not better than, the BP in term of time complexity, accuracy deviations across experiments, and most importantly - prevention from over-fitting for prediction of peptide binding to HLA.
Resumo:
Current debates about educational theory are concerned with the relationship between knowledge and power and thereby issues such as who possesses a truth and how have they arrived at it, what questions are important to ask, and how should they best be answered. As such, these debates revolve around questions of preferred, appropriate, and useful theoretical perspectives. This paper overviews the key theoretical perspectives that are currently used in physical education pedagogy research and considers how these inform the questions we ask and shapes the conduct of research. It also addresses what is contested with respect to these perspectives. The paper concludes with some cautions about allegiances to and use of theories in line with concerns for the applicability of educational research to pressing social issues.
Resumo:
We present a resonating-valence-bond theory of superconductivity for the Hubbard-Heisenberg model on an anisotropic triangular lattice. Our calculations are consistent with the observed phase diagram of the half-filled layered organic superconductors, such as the beta, beta('), kappa, and lambda phases of (BEDT-TTF)(2)X [bis(ethylenedithio)tetrathiafulvalene] and (BETS)(2)X [bis(ethylenedithio)tetraselenafulvalene]. We find a first order transition from a Mott insulator to a d(x)(2)-y(2) superconductor with a small superfluid stiffness and a pseudogap with d(x)(2)-y(2) symmetry.
Resumo:
A survey study of twenty-two Australian CEOs and their subordinates assessed relationships between Australian leader motives, Australian value based leader behaviour, subordinate tall poppy attitudes and subordinate commitment, effectiveness, motivation and satisfaction (CEMS). On the whole, the results showed general support for value based leadership processes. Subsequent regression analyses of the second main component of Value Based Leadership Theory, value based leader behaviour, revealed that the collectivistic, inspirational, integrity and visionary behaviour sub-scales of the construct were positively related with subordinate CEMS. Although the hypothesis that subordinate tall poppy attitudes would moderate value based leadership processes was not clearly supported, subsequent regression analyses found that subordinate tall poppy attitudes were negatively related with perceptions of value based leader behaviour and CEMS. These findings suggest complex relationships between the three constructs, and the proposed model for the Australian context is accordingly amended. Overall, the research supports the need to consider cultural-specific attitudes in management development.
Resumo:
The theory of Owicki and Gries has been used as a platform for safety-based verifcation and derivation of concurrent programs. It has also been integrated with the progress logic of UNITY which has allowed newer techniques of progress-based verifcation and derivation to be developed. However, a theoretical basis for the integrated theory has thus far been missing. In this paper, we provide a theoretical background for the logic of Owicki and Gries integrated with the logic of progress from UNITY. An operational semantics for the new framework is provided which is used to prove soundness of the progress logic.
Resumo:
Polytomous Item Response Theory Models provides a unified, comprehensive introduction to the range of polytomous models available within item response theory (IRT). It begins by outlining the primary structural distinction between the two major types of polytomous IRT models. This focuses on the two types of response probability that are unique to polytomous models and their associated response functions, which are modeled differently by the different types of IRT model. It describes, both conceptually and mathematically, the major specific polytomous models, including the Nominal Response Model, the Partial Credit Model, the Rating Scale model, and the Graded Response Model. Important variations, such as the Generalized Partial Credit Model are also described as are less common variations, such as the Rating Scale version of the Graded Response Model. Relationships among the models are also investigated and the operation of measurement information is described for each major model. Practical examples of major models using real data are provided, as is a chapter on choosing an appropriate model. Figures are used throughout to illustrate important elements as they are described.