2 resultados para biased estimation

em University of Queensland eSpace - Australia


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Subsequent to the influential paper of [Chan, K.C., Karolyi, G.A., Longstaff, F.A., Sanders, A.B., 1992. An empirical comparison of alternative models of the short-term interest rate. Journal of Finance 47, 1209-1227], the generalised method of moments (GMM) has been a popular technique for estimation and inference relating to continuous-time models of the short-term interest rate. GMM has been widely employed to estimate model parameters and to assess the goodness-of-fit of competing short-rate specifications. The current paper conducts a series of simulation experiments to document the bias and precision of GMM estimates of short-rate parameters, as well as the size and power of [Hansen, L.P., 1982. Large sample properties of generalised method of moments estimators. Econometrica 50, 1029-1054], J-test of over-identifying restrictions. While the J-test appears to have appropriate size and good power in sample sizes commonly encountered in the short-rate literature, GMM estimates of the speed of mean reversion are shown to be severely biased. Consequently, it is dangerous to draw strong conclusions about the strength of mean reversion using GMM. In contrast, the parameter capturing the levels effect, which is important in differentiating between competing short-rate specifications, is estimated with little bias. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The measurement of lifetime prevalence of depression in cross-sectional surveys is biased by recall problems. We estimated it indirectly for two countries using modelling, and quantified the underestimation in the empirical estimate for one. A microsimulation model was used to generate population-based epidemiological measures of depression. We fitted the model to 1-and 12-month prevalence data from the Netherlands Mental Health Survey and Incidence Study (NEMESIS) and the Australian Adult Mental Health and Wellbeing Survey. The lowest proportion of cases ever having an episode in their life is 30% of men and 40% of women, for both countries. This corresponds to a lifetime prevalence of 20 and 30%, respectively, in a cross-sectional setting (aged 15-65). The NEMESIS data were 38% lower than these estimates. We conclude that modelling enabled us to estimate lifetime prevalence of depression indirectly. This method is useful in the absence of direct measurement, but also showed that direct estimates are underestimated by recall bias and by the cross-sectional setting.