20 resultados para bench-kokoluokka
em University of Queensland eSpace - Australia
Resumo:
This study examined the effects of 26 days of oral creatine monohydrate (Cr) supplementation on near-maximal muscular strength, high-intensity bench press performance, and body composition. Eighteen male powerlifters with at least 2 years resistance training experience took part in this 28-day experiment. Pre and postmeasurements (Days 1 and 28) were taken of near-maximal muscular strength, body mass, and % body fat. There were two periods of supplementation Days 2 to 6 and Days 7 to 27. ANOVA and t-tests revealed that Cr supplementation significantly increased body mass and lean body mass with no changes in % body fat. Significant increases in 3-RM strength occurred in both groups, both absolute and relative to body mass; the increases were greater in the Cr group. The change in total repetitions also increased significantly with Cr supplementation both in absolute terms and relative to body mass, while no significant change was seen in the placebo (P) group. Creatine supplementation caused significant changes in the number of BP reps in Sets 1, 4, and 5. No changes occurred in the P group. It appears that 26 days of Cr supplementation significantly improves muscular strength and repeated near-maximal BP performance, and induces changes in body composition.
Resumo:
Absolute calibration relates the measured (arbitrary) intensity to the differential scattering cross section of the sample, which contains all of the quantitative information specific to the material. The importance of absolute calibration in small-angle scattering experiments has long been recognized. This work details the absolute calibration procedure of a small-angle X-ray scattering instrument from Bruker AXS. The absolute calibration presented here was achieved by using a number of different types of primary and secondary standards. The samples were: a glassy carbon specimen, which had been independently calibrated from neutron radiation; a range of pure liquids, which can be used as primary standards as their differential scattering cross section is directly related to their isothermal compressibility; and a suspension of monodisperse silica particles for which the differential scattering cross section is obtained from Porod's law. Good agreement was obtained between the different standard samples, provided that care was taken to obtain significant signal averaging and all sources of background scattering were accounted for. The specimen best suited for routine calibration was the glassy carbon sample, due to its relatively intense scattering and stability over time; however, initial calibration from a primary source is necessary. Pure liquids can be used as primary calibration standards, but the measurements take significantly longer and are, therefore, less suited for frequent use.
Resumo:
The aim of this study was to examine the reliability and validity of field tests for assessing physical function in mid-aged and young-old people (55–70 y). Tests were selected that required minimal space and equipment and could be implemented in multiple field settings such as a general practitioner's office. Nineteen participants completed 2 field and 1 laboratory testing sessions. Intra-class correlations showed good reliability for the tests of upper body strength (lift and reach, R= .66), lower body strength (sit to stand, R= .80) and functional capacity (Canadian Step Test, R= .92), but not for leg power (single timed chair rise, R= .28). There was also good reliability for the balance test during 3 stances: parallel (94.7% agreement), semi-tandem (73.7%), and tandem (52.6%). Comparison of field test results with objective laboratory measures found good validity for the sit to stand (cf 1RM leg press, Pearson r= .68, p< .05), and for the step test (cf PWC140, r= −.60, p< .001), but not for the lift and reach (cf 1RM bench press, r= .43, p> .05), balance (r= −.13, −.18, .23) and rate of force development tests (r= −.28). It was concluded that the lower body strength and cardiovascular function tests were appropriate for use in field settings with mid-aged and young-old adults.
Resumo:
This investigation demonstrates the capability of a bench-scale sequencing batch reactor (SBR) to biodegrade an inhibitory substrate at a high loading rate. A SBR loading rate of 3.12 kg phenol.m(-3)d(-1) (2.1 g COD.g(-1) MLVSS d(-1)) with a COD removal efficiency of 97% at a SRT of 4 days and a HRT of 10 hours was achieved; this rate was not reached before. The SBR was operated at 4 hours cycle, including 3 hours react phase. The synthetic wastewater of 1300 mg/L phenol was the sole carbon source. Oxygen uptake rates (OUR) were monitored in-situ at various stages of the SBR. The oxygen mass transfer coefficient, K(L)a, of 12.6 h(-1) was derived from respirometry. Use of respirometry in SBR aided the tracking of the soluble substrate through OUR.
Resumo:
An acceleration compensated transducer was developed to enable the direct measurement of skin friction in hypervelocity impulse facilities. The gauge incorporated a measurement and acceleration element that employed direct shear of a piezoelectric ceramic. The design integrated techniques to maximize rise time and shear response while minimizing the affects of acceleration, pressure, heat transfer, and electrical interference. The arrangement resulted in a transducer natural frequency near 40 kHz. The transducer was calibrated for shear and acceleration in separate bench tests and was calibrated for pressure within an impulse facility. Uncertainty analyses identified only small experimental errors in the shear and acceleration calibration techniques. Although significant errors were revealed in the method of pressure calibration, total skin-friction measurement errors as low as +/-7-12% were established. The transducer was successfully utilized in a shock tunnel, and sample measurements are presented for flow conditions that simulate a flight Mach number near 8.
Resumo:
The ability to generate peak power is central for performance in many sports. Currently two distinct resistance training methods are used to develop peak power, the heavy weight/slow velocity and light weight/fast velocity regimes. When using the light weight/fast velocity power training method it was proposed that peak power would be greater in a shoulder throw exercise compared with a normal shoulder press. Nine males performed three lifts in the shoulder press and shoulder throw at 30% and 40% of their one repetition maximum (1RM). These lifts were performed identically, except for the release of the bar in the throw condition. A potentiometer attached to the bar measured displacement and duration of the lifts. The time of bar release in the shoulder throw was determined with a pressure switch. ANOVA was used to examine statistically significant differences where the level of acceptance was set at p
Resumo:
The purpose of this study was to determine whether or not losses of strength or endurance following eccentric and concentric exercise are associated with reduced excitation. The effects of eccentric and concentric work on maximal voluntary isometric contraction (MVC) and surface electromyogram (EMG) of the quadriceps were studied in 10 healthy male subjects following bench-stepping for 20 min with a constant leading leg. Prior to stepping and at 0, 0.25, 0.50, 0.75, 1, 3. 24 and 48 h afterwards the subjects performed a 30 s leg extension MVC with each leg during which the isometric force and the root mean square voltage of the EMG were recorded. In the eccentrically exercised muscles (ECC), MVC0-3 (force during the first 3 s of contraction) fen immediately after the bench-stepping exercise to 88 +/- 2% (mean SE) of the pre-exercise value and remained significantly lower than the concentrically exercised muscles (p < 0.05). The muscle weakness in the ECC could not be attributed to central fatigue as surface EMG amplitude at MVC0-3 increased during the recovery period. Muscle weakness after eccentric exercise appears to be due to contractile failure, which is not associated with a reduction in excitation as assessed by surface EMG. Muscular fatigue over 30 s did not change in the two muscle groups after exercise (p = 0.79), indicating that the ECC were weaker but not more fatiguable after exercise.
Resumo:
Measurement while drilling (MWD) techniques can provide a useful tool to aid drill and blast engineers in open cut mining. By avoiding time consuming tasks such as scan-lines and rock sample collection for laboratory tests, MWD techniques can not only save time but also improve the reliability of the blast design by providing the drill and blast engineer with the information specially tailored for use. While most mines use a standard blast pattern and charge per blasthole, based on a single rock factor for the entire bench or blast region, information derived from the MWD parameters can improve the blast design by providing more accurate rock properties for each individual blasthole. From this, decisions can be made on the most appropriate type and amount of explosive charge to place in a per blasthole or to optimise the inter-hole timing detonation time of different decks and blastholes. Where real-time calculations are feasible, the system could extend the present blast design even be used to determine the placement of subsequent holes towards a more appropriate blasthole pattern design like asymmetrical blasting.
Resumo:
Blasting has been the most frequently used method for rock breakage since black powder was first used to fragment rocks, more than two hundred years ago. This paper is an attempt to reassess standard design techniques used in blasting by providing an alternative approach to blast design. The new approach has been termed asymmetric blasting. Based on providing real time rock recognition through the capacity of measurement while drilling (MWD) techniques, asymmetric blasting is an approach to deal with rock properties as they occur in nature, i.e., randomly and asymmetrically spatially distributed. It is well accepted that performance of basic mining operations, such as excavation and crushing rely on a broken rock mass which has been pre conditioned by the blast. By pre-conditioned we mean well fragmented, sufficiently loose and with adequate muckpile profile. These muckpile characteristics affect loading and hauling [1]. The influence of blasting does not end there. Under the Mine to Mill paradigm, blasting has a significant leverage on downstream operations such as crushing and milling. There is a body of evidence that blasting affects mineral liberation [2]. Thus, the importance of blasting has increased from simply fragmenting and loosing the rock mass, to a broader role that encompasses many aspects of mining, which affects the cost of the end product. A new approach is proposed in this paper which facilitates this trend 'to treat non-homogeneous media (rock mass) in a non-homogeneous manner (an asymmetrical pattern) in order to achieve an optimal result (in terms of muckpile size distribution).' It is postulated there are no logical reasons (besides the current lack of means to infer rock mass properties in the blind zones of the bench and onsite precedents) for drilling a regular blast pattern over a rock mass that is inherently heterogeneous. Real and theoretical examples of such a method are presented.
Resumo:
The nitrogen removal capacity of a suspended culture system treating mature landfill leachate was investigated. Leachate containing high ammonium levels of 300-900 mg N/L was nitrified in a bench scale sequencing batch reactor. Leachate from four different landfills was treated over a two year period for the removal of nitrogen. In this time, a highly specific nitrifying culture was attained that delivered exceptionally high rates of ammonia removal. No sludge was wasted from the system to increase the throughput and up to 13 g/L of MLSS was obtained. Settleability of the purely nitrifying biomass was excellent with SVI less than 40 mL/g, even at the high sludge concentrations. Nitrification rates up to 246 mg NI(L h) (5.91 g N/(L d)) and specific nitrification rates of 36 mg N/(gVSS h) (880 mg N/(gVSS d)) were obtained. The loading to the system at this time allowed complete nitrification of the leachate with a hydraulic retention time of only 5 hours. Following these successful treatability studies, a full-scale plant was designed and built at one of the landfills investigated.
Resumo:
We generated draft genome sequences for two cold-adapted Archaea, Methanogenium frigidum and Methanococcoides burtonii, to identify genotypic characteristics that distinguish them from Archaea with a higher optimal growth temperature (OGT). Comparative genomics revealed trends in amino acid and tRNA composition, and structural features of proteins. Proteins from the cold-adapted Archaea are characterized by a higher content of noncharged polar amino acids, particularly Gin and Thr and a lower content of hydrophobic amino acids, particularly Leu. Sequence data from nine methanogen genomes (OGT 15degrees-98degreesC) were used to generate IIII modeled protein structures. Analysis of the models from the cold-adapted Archaea showed a strong tendency in the solvent-accessible area for more Gin, Thr, and hydrophobic residues and fewer charged residues. A cold shock domain (CSD) protein (CspA homolog) was identified in M. frigidum, two hypothetical proteins with CSD-folds in M. burtonii, and a unique winged helix DNA-binding domain protein in M. burtonii. This suggests that these types of nucleic acid binding proteins have a critical role in cold-adapted Archaea. Structural analysis of tRNA sequences from the Archaea indicated that GC content is the major factor influencing tRNA stability in hyperthermophiles, but not in the psychrophiles, mesophiles or moderate thermophiles. Below an OGT of 60degreesC, the GC content in tRNA was largely unchanged, indicating that any requirement for flexibility of tRNA in psychrophiles is mediated by other means. This is the first time that comparisons have been performed with genome data from Archaea spanning the growth temperature extremes. from psychrophiles to hyperthermophiles
Resumo:
Aim. Numerous studies report an association between muscle strength and bone mineral density (BMD) in young and older women. However, the participants are generally non-athletes, thus it is unclear if the relationship varies by exercise status. Therefore, the purpose was to examine the relationships between BMD and muscle strength in young women with markedly different exercise levels. Methods. Experimental design: cross-sectional. Setting: a University research laboratory. Participants: 18 collegiate gymnasts and 22 age- and weight-matched recreationally active control women. Measures: lumbar spine, femoral neck, arm, leg and whole body BMD (g/cm(2)) were assessed by dual X-ray absorptiometry. In addition, lumbar spine and femoral neck bone mineral apparent density (BMAD, g/cm(3)) was calculated. Handgrip strength and knee extensor and flexor torque (60degrees/s) were determined by dynamometry, and bench press and leg press strength (1-RM) using isotonic equipment. Results. BMD at all sites and bench press, leg press and knee flexor strength were greater in gymnasts than controls (p