34 resultados para bcl-2-associated transcription factor 1

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fetal epithelium retains the ability to re-epithelialize a wound in organotypic culture in a manner not dependent on the presence of underlying dermal substrata. This capacity is lost late in the third trimester of gestation or after embryonic day 17 (E-17) in the rat such that embryonic day 19 (E-19) wounds do not re-epithelialize. Moreover, wounds created in E-17 fetuses in utero heal in a regenerative, scar-free fashion. To investigate the molecular events regulating re-epithelialization in fetal skin, the wound-induced expression profile and tissue localization of activator protein 1 (AP-1) transcription factors c-Fos and c-Jun was characterised in E-17 and E-19 skin using organotypic fetal cultures. The involvement of mitogen-activated protein kinase (MAPK) signaling in mediating wound-induced transcription factor expression and wound re-epithelialization was assessed, with the effect of wounding on the expression of keratinocyte differentiation markers determined. Our results show that expression of AP-1 transcription factors was induced immediately by wounding and localized predominantly to the epidermis in E-17 and E-19 skin. c-fos and c-jun induction was transient in E-17 skin with MAPK-dependent c-fos expression necessary for the re-epithelialization of an excisional wound in organotypic culture. In E-19 skin, AP-11 expression persisted beyond 12 h post-wounding, and marked upregulation of the keratinocyte differentiation markers keratin 10 and loricrin was observed. No such changes in the expression of keratin 10 or loricrin occurred in E-17 skin. These findings indicate that re-epithelialization in fetal skin is regulated by wound-induced AP-1 transcription factor expression via MAPK and the differentiation status of keratinocytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type 1 diabetes (T1D) is a multifactorial autoimmune disease, with strong genetic component. Several susceptibility loci contribute to genetic predisposition to T1D. One of these loci have been mapped to chromosome 1q42 in UK and US joined affected family data sets but needs to be replicated in other populations. In this study, we evaluated sixteen microsatellites located on 1q42 for linkage with T1D in 97 Russian affected sibling pairs. A 2.7-cm region of suggestive linkage to T1D between markers D1S1644 and D1S225 was found by multipoint linkage analysis. The peak of linkage was shown for D1S2847 (P = 0.0005). Transmission disequilibrium test showed significant undertransmission of the 156-bp allele of D1S2847 from parents to diabetic children (28 transmissions vs. 68 nontransmissions, P = 0.043) in Russian affected families. A preferential transmission from parents to diabetic offspring was also shown for the T(-25) and T1362 alleles of the C/T(-25) and C/T1362 dimorphisms, both located at the TAF5L gene, which is situated 103 kb from D1S2847. Together with the A/C744 TAF5L SNP, these markers share common T(-25)/A744/T1362 and C(-25)/C744/T1362 haplotypes associated with higher and lower risk of diabetes (Odds Ratio = 2.15 and 0.62, respectively). Our results suggest that the TAF5L gene, encoding TAF5L-like RNA polymerase II p300/CBP associated factor (PCAF)-associated factor, could represent the susceptibility gene for T1D on chromosome 1q42 in Russian affected patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gene translocations that repress the function of the Runx1 transcription factor play a critical role in the development of myeloid leukemia. In this report, we demonstrate that Runx1 precisely regulates c-fms (CSF-1 receptor) gene expression. Runx1 controlled expression by binding to multiple sites within the mouse c-fms gene, allowing interaction between promoter and downstream enhancer elements. The runx1 and c-fms genes showed an identical pattern of expression in mature macrophages. Runx1 expression was repressed in CSF-1 stimulated, proliferating bone marrow-derived macrophages (BMM) and significantly increased in quiescent, CSF-1 starved cells. The RAW264.7 and Mono-Mac-6, macrophage-like cell lines expressed low levels of Runx1 and both showed growth arrest and cell death with ectopic expression of Runx1. The EM-3 cell line, which represents an early myeloid progenitor cell line, showed growth arrest with Runx1 expression in the absence of any detectable changes in cell differentiation. These findings suggest that Runx1 regulates growth and survival of myeloid cells and provide a novel insight into the role of Runx family gene translocations in leukemogenesis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modulation of the cytochrome P450 (CYP) monooxygenase system by cadmium was investigated in male, adult DBA/2J mice treated with a single dose (16 mumol/kg body weight, i.p.) of cadmium chloride (CdCl2). Total CYP content of liver and kidney microsomes decreased maximally (56% and 85%, respectively) 24 and 18 h, respectively, after CdCl2 treatment. Progressive increases of hepatic coumarin 7-hydroxylase (COH) activity; indicative of CYP2A5 activity, relative to the total CYP content were seen at 8 h (2-fold), 12 h (3-fold), 18 h (12-fold), and 24 h (15-fold). Similar changes were seen in the kidney. Liver and kidney CYP2A5 mRNA levels increased maximally 12 and 4 h after treatment and decreased to almost half 6 h later. In contrast, kidney and liver CYP2A5 protein levels increased maximally at 18 and 24 h. The CYP2A5 mRNA levels in the kidney and liver increased after Cd treatment in Nrf2 +/+ but not in Nrf2 -/- mouse. This study demonstrates that hepatic and kidney CYP2A5 is upregulated by cadmium with a somewhat faster response in the kidney than the liver. The strong upregulation of the CYP2A5 both at mRNA and enzyme activity levels, with a simultaneous decrease in the total CYP concentration suggest an unusual mode of regulation of CYP2A5 in response to cadmium exposure, amongst the CYP enzymes. The observed decrease in the mRNA but not in protein levels after maximal induction may suggest involvement of post-trancriptional mechanisms in the regulation. Upregulation of CYP2A5 by cadmium in the Nrf2 +/+ mice but not in the Nrf2 -/- mice indicates a role for this transcription factor in the regulation. (C) 2003 Elsevier Ireland Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Associations between parenting style and depressive symptomatology in a community sample of young adolescents (N = 2596) were investigated using self-report measures including the Parental Bonding Instrument and the Center for Epidemiologic Studies Depression Scale. Specifically, the 25-item 2-factor and 3-factor models by Parker et al. (1979), Kendler's (1996) 16-item 3-factor model, and Parker's (1983) quadrant model for the Parental Bonding Instrument were compared. Data analysis included analysis of variance and logistic regression. Reanalysis of Parker's original scale indicates that overprotection is composed of separate factors: intrusiveness (at the individual level) and restrictiveness (in the social context). All models reveal significant independent contributions from paternal care, maternal care, and maternal overprotection (2-factor) or intrusiveness (3-factor) to moderate and serious depressive symptomatology, controlling for sex and family living arrangement. Additive rather than multiplicative interactions between care and overprotection were found. Regardless of the level of parental care and affection, clinicians should note that maternal intrusiveness is strongly associated with adverse psychosocial health in young adolescents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

HMG box containing protein 1 (HBP1) is a high mobility group domain transcriptional repressor that regulates proliferation in differentiated tissues. We have found mouse Hbp1 to be expressed strongly in the embryonic mouse testis from approximately 12.5 days post coitum, compared with low levels of expression in the embryonic ovary. Expression of Hbp1 is maintained in the developing testis beyond the onset of spermatogenesis after birth. Whole-mount in situ hybridisation analysis showed that expression of Hbp1 in the XY gonad is localized within the developing testis cords, the precursors of the seminiferous tubules. Expression of Hbp1 is not apparent in testis cords of gonads from homozygous We mutant embryos, which lack germ cells. In situ hybridisation analysis on cryosectioned embryonic testis indicated that Hbp1 expression resembles that of the germ cell marker Oct4. We conclude that Hbp1 is up-regulated specifically in germ cells of the developing XY gonad. The expression of Hbp1 in XY germ cells appears to correlate with the onset of mitotic arrest in these cells. (C) 2004 Wiley-Liss, Inc.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To identify transcription factors (TFs) involved in jasmonate (JA) signaling and plant defense, we screened 1,534 Arabidopsis (Arabidopsis thaliana) TFs by real-time quantitative reverse transcription-PCR for their altered transcript at 6 h following either methyl JA treatment or inoculation with the incompatible pathogen Alternaria brassicicola. We identified 134 TFs that showed a significant change in expression, including many APETALA2/ethylene response factor (AP2/ERF), MYB, WRKY, and NACTF genes with unknown functions. Twenty TF genes were induced by both the pathogen and methyl JA and these included 10 members of the AP2/ERF TF family, primarily from the B1a and B3 subclusters. Functional analysis of the B1a TF AtERF4 revealed that AtERF4 acts as a novel negative regulator of JA-responsive defense gene expression and resistance to the necrotrophic fungal pathogen Fusarium oxysporum and antagonizes JA inhibition of root elongation. In contrast, functional analysis of the B3 TF AtERF2 showed that AtERF2 is a positive regulator of JA-responsive defense genes and resistance to F. oxysporum and enhances JA inhibition of root elongation. Our results suggest that plants coordinately express multiple repressor-and activator-type AP2/ERFs during pathogen challenge to modulate defense gene expression and disease resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Expression of the mouse transcription factor EC (Tfec) is restricted to the myeloid compartment, suggesting a function for Tfec in the development or function of these cells. However, mice lacking Tfec develop normally, indicating a redundant role for Tfec in myeloid cell development. We now report that Tfec is specifically induced in bone marrow-derived macrophages upon stimulation with the Th2 cytokines, IL-4 and IL-13, or LPS. LPS induced a rapid and transient up-regulation of Tfec mRNA expression and promoter activity, which was dependent on a functional NF-kappa B site. IL-4, however, induced a rapid, but long-lasting, increase in Tfec mRNA, which, in contrast to LPS stimulation, also resulted in detectable levels of Tfec protein. IL-4-induced transcription of Tfec was absent in macrophages lacking Stat6, and its promoter depended on two functional Stat6-binding sites. A global comparison of IL-4-induced genes in both wild-type and Tfec mutant macrophages revealed a surprisingly mild phenotype with only a few genes affected by Tfec deficiency. These included the G-CSFR (Csf3r) gene that was strongly up-regulated by IL-4 in wild-type macrophages and, to a lesser extent, in Tfec mutant macrophages. Our study also provides a general definition of the transcriptome in alternatively activated mouse macrophages and identifies a large number of novel genes characterizing this cell type.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We recently established that fibroblast growth factor (FGF)-1 promotes adipogenesis of primary human preadipocytes (phPA). In the current report, we have characterized the adipogenic effects of FGF-1 in phPA and also in a human PA strain derived from an individual with Simpson-Golabi-Behmel syndrome (SGBS PA), which exhibit an intrinsic capacity to differentiate with high efficiency. In further studies, we compared these models with the well-characterized murine 3T3-L1 preadipocyte cell line (3T3-L1 PA). FGF-1 up-regulated the adipogenic program in phPA, with increased expression of peroxisome proliferator-activated receptor-gamma in confluent PA prior to induction of differentiation and increased expression of adipocyte markers during differentiation. Moreover, phPA differentiated in the presence of FGF-1 were more insulin responsive and secreted increased levels of adiponectin. FGF-1 treatment of SGBS PA further enhanced differentiation. For the most part, the adipogenic program in phPA paralleled that observed in 3T3-L1 PA; however, we found no evidence of mitotic clonal expansion in the phPA. Finally, we investigated a role for extracellular regulated kinase 1/2 (ERK 1/2) in adipogenesis of phPA. FGF-1 induced robust phosphorylation of ERK1/2 in early differentiation and inhibition of ERK1/2 activity significantly reduced phPA differentiation. These data suggest that FGF-1 treated phPA represent a valuable in vitro model for the study of adipogenesis and insulin action and indicate that ERK1/2 activation is necessary for human adipogenesis in the absence of mitotic clonal expansion.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ciliary neurotrophic factor alpha-receptor(CNTFRalpha) is required for motoneuron survival during development, but the relevant ligand(s) has not been determined. One candidate is the heterodimer formed by cardiotrophin-like cytokine (CLC) and cytokine-like factor 1 (CLF). CLC/CLF binds to CNTFRalpha and enhances the survival of developing motoneurons in vitro; whether this novel trophic factor plays a role in neural development in vivo has not been tested. We examined motor and sensory neurons in embryonic chicks treated with CLC and in mice with a targeted deletion of the clf gene. Treatment with CLC increased the number of lumbar spinal cord motoneurons that survived the cell death period in chicks. However, this effect was regionally specific, because brachial and thoracic motoneurons were unaffected. Similarly, newborn clf -/- mice exhibited a significant reduction in lumbar motoneurons, with no change in the brachial or thoracic cord. Clf deletion also affected brainstem motor nuclei in a regionally specific manner; the number of motoneurons in the facial but not hypoglossal nucleus was significantly reduced. Sensory neurons of the dorsal root ganglia were not affected by either CLC treatment or clf gene deletion. Finally, mRNA for both clc and clf was found in skeletal muscle fibers of embryonic mice during the motoneuron cell death period. These findings support the view that CLC/CLF is a target-derived factor required for the survival of specific pools of motoneurons. The in vivo actions of CLC and CLF can account for many of the effects of CNTFRalpha on developing motoneurons.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epstein-Barr virus (EBV)-infected B cell lymphomas are resistant to apoptosis during cancer development and treatment with therapies. The molecular controls that determine why EBV infection causes apoptosis resistance need further definition. EBV-positive and EBV-negative BJA-B B cell lymphoma cell lines were used to compare the expression of selected apoptosis-regulating Bcl-2 and caspase proteins in EBV-related apoptosis resistance, after 8 hr or 18-24 hr etoposide treatment (80 muM). Apoptosis was quantified using morphology and verified with Hoechst 33258 nuclear stain and electron microscopy. Fluorescence activated cell sorting (FACS) was used to analyse effects on cell cycle of the EBV infection as well as etoposide treatment. Anti-apoptotic Bcl-2 and Bcl-XL, pro-apoptotic Bax, caspase-3 and caspase-9 expression and activation were analysed using Western immunoblots and densitometry. EBV-positive cultures had significantly lower levels of apoptosis in untreated and etoposide-treated cultures in comparison with EBV-negative cultures (p < 0.05). FACS analysis indicated a strong G2/M block in both cell sublines after etoposide treatment. Endogenous Bcl-2 was minimal in the EBV-negative cells in comparison with strong expression in EBV-positive cells. These levels did not alter with etoposide treatment. Bcl-XL was expressed endogenously in both cell lines and had reduced expression in EBV-negative cells after etoposide treatment. Bax showed no etoposide-induced alterations in expression. Pro-caspase-9 and -3 were seen in both EBV-positive and -negative cells. Etoposide induced cleavage of caspase-9 in both cell lines, with the EBV-positive cells having proportionally less cleavage product, in agreement with their lower levels of apoptosis. Caspase-3 cleavage occurred in the EBV-negative etoposide-treated cells but not in the EBV-positive cells. The results indicate that apoptosis resistance in EBV-infected B cell lymphomas is promoted by an inactive caspase-3 pathway and elevated expression of Bcl-2 that is not altered by etoposide drug treatment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Clustering of the T cell integrin, LFA-1, at specialized regions of intercellular contact initiates integrin-mediated adhesion and downstream signaling, events that are necessary for a successful immunological response. But how clustering is achieved and sustained is not known. Here we establish that an LFA-1-associated molecule, PTA-1, is localized to membrane rafts and binds the carboxyl-terminal domain of isoforms of the actin-binding protein 4.1G. Protein 4.1 is known to associate with the membrane-associated guanylate kinase homologue, human discs large. We show that the carboxyl-terminal peptide of PTA-1 also can bind human discs large and that the presence or absence of this peptide greatly influences binding between PTA-1 and different isoforms of 4.1G. T cell stimulation with phorbol ester or PTA-1 cross-linking induces PTA-1 and 4.1G to associate tightly with the cytoskeleton, and the PTA-1 from such activated cells now can bind to the amino-terminal region of 4.1G. We propose that these dynamic associations provide the structural basis for a regulated molecular adhesive complex that serves to cluster and transport LFA-1 and associated molecules.

Relevância:

100.00% 100.00%

Publicador: