7 resultados para basin management
em University of Queensland eSpace - Australia
Resumo:
The planning and management of water resources in the Pioneer Valley, north-eastern Australia requires a tool for assessing the impact of groundwater and stream abstractions on water supply reliabilities and environmental flows in Sandy Creek (the main surface water system studied). Consequently, a fully coupled stream-aquifer model has been constructed using the code MODHMS, calibrated to near-stream observations of watertable behaviour and multiple components of gauged stream flow. This model has been tested using other methods of estimation, including stream depletion analysis and radon isotope tracer sampling. The coarseness of spatial discretisation, which is required for practical reasons of computational efficiency, limits the model's capacity to simulate small-scale processes (e.g., near-stream groundwater pumping, bank storage effects), and alternative approaches are required to complement the model's range of applicability. Model predictions of groundwater influx to Sandy Creek are compared with baseflow estimates from three different hydrograph separation techniques, which were found to be unable to reflect the dynamics of Sandy Creek stream-aquifer interactions. The model was also used to infer changes in the water balance of the system caused by historical land use change. This led to constraints on the recharge distribution which can be implemented to improve model calibration performance. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Current policy issues surrounding management of the Great Artesian Basin - historical development of existing legislation and institutions - hydrological and historical background information - development of concerns over unsustainable use of resources and possible adverse environmental impacts - recent developments associated with the general reforms to water law and policy initiated by the Council of Australian Governments (COAG) - comparison of issues surrounding the Murray-Darling Basin and the Great Artesian Basin.
Resumo:
To maximise the potential of protected areas, we need to understand the strengths and weaknesses in their management and the threats and stresses that they face. There is increasing pressure on governments and other bodies responsible for protected areas to monitor their effectiveness. The reasons for assessing management effectiveness include the desire by managers to adapt and improve their management strategies, improve planning and priority setting and the increasing demands for reporting and accountability being placed on managers, both nationally and internationally. Despite these differing purposes for assessment, some common themes and information needs can be identified, allowing assessment systems to meet multiple uses. Protected-area management evaluation has a relatively short history. Over the past 20 years a number of systems have been proposed but few have been adopted by management agencies. In response to a recognition of the need for a globally applicable approach to this issue, the IUCN World Commission on Protected Areas developed a framework for assessing management effectiveness of both protected areas and protected area systems. This framework was launched at the World Conservation Congress in Jordan in 2000. The framework provides guidance to managers to develop locally relevant assessment systems while helping to harmonise assessment approaches around the world. The framework is strongly linked to the protected area management process and is adaptable to different types and circumstances of protected areas around the world. Examples from Fraser Island in Australia and the Congo Basin illustrate the use of the framework.
Resumo:
This paper presents a scientific and technical description of the modelling framework and the main results of modelling the long-term average sediment delivery at hillslope to medium-scale catchments over the entire Murray Darling Basin (MDB). A theoretical development that relates long-term averaged sediment delivery to the statistics of rainfall and catchment parameters is presented. The derived flood frequency approach was adapted to investigate the problem of regionalization of the sediment delivery ratio (SDR) across the Basin. SDR, a measure of catchment response to the upland erosion rate, was modeled by two lumped linear stores arranged in series: hillslope transport to the nearest streams and flow routing in the channel network. The theory shows that the ratio of catchment sediment residence time (SRT) to average effective rainfall duration is the most important control in the sediment delivery processes. In this study, catchment SRTs were estimated using travel time for overland flow multiplied by an enlargement factor which is a function of particle size. Rainfall intensity and effective duration statistics were regionalized by using long-term measurements from 195 pluviograph sites within and around the Basin. Finally, the model was implemented across the MDB by using spatially distributed soil, vegetation, topographical and land use properties under Geographic Information System (GIs) environment. The results predict strong variations in SDR from close to 0 in floodplains to 70% in the eastern uplands of the Basin. (c) 2005 Elsevier Ltd. All rights reserved.