10 resultados para backward pump
em University of Queensland eSpace - Australia
Resumo:
Large-eddy simulation is used to predict heat transfer in the separated and reattached flow regions downstream of a backward-facing step. Simulations were carried out at a Reynolds number of 28 000 (based on the step height and the upstream centreline velocity) with a channel expansion ratio of 1.25. The Prandtl number was 0.71. Two subgrid-scale models were tested, namely the dynamic eddy-viscosity, eddy-diffusivity model and the dynamic mixed model. Both models showed good overall agreement with available experimental data. The simulations indicated that the peak in heat-transfer coefficient occurs slightly upstream of the mean reattachment location, in agreement with experimental data. The results of these simulations have been analysed to discover the mechanisms that cause this phenomenon. The peak in heat-transfer coefficient shows a direct correlation with the peak in wall shear-stress fluctuations. It is conjectured that the peak in these fluctuations is caused by an impingement mechanism, in which large eddies, originating in the shear layer, impact the wall just upstream of the mean reattachment location. These eddies cause a 'downwash', which increases the local heat-transfer coefficient by bringing cold fluid from above the shear layer towards the wall.
Resumo:
Current evidence supports parenteral infusion of proton pump inhibitors (PPI) after endoscopic treatment of bleeding peptic ulcers and such treatment seems reasonable where there is active bleeding or visible vessel on endoscopy. Parenteral boluses of PPI can be used in patients nil by mouth who cannot tolerate oral therapy. We sought to examine the appropriateness of parenteral PPI use. Drug utilisation evaluation was performed on 94 patients admitted to a 500 bed metropolitan hospital. 39 patients received continuous parenteral infusion of omeprazole (8 mg/ h) over a mean of 60 ± 29 h. 55 patients had parenteral boluses (40 mg bd) of omeprazole over a mean of 5 ± 4 days. Indications for PPI infusion (n = 39) were: major haemorrhage requiring transfusion (23), minor haemorrhage (8), dyspepsia (4) and others (4). 31 of the 39 patients on PPI infusion had upper gastrointestinal (GI) endoscopy. PPI infusion was commenced prior to endoscopy in 26 (84%) patients. 13 patients (33%) had active bleeding or visible non bleeding vessels at endoscopy. Only 11 patients (28%) had endoscopically treated peptic ulcers. Indications for parenteral PPI boluses (n = 55) included patients nil by mouth unable to take maintenance PPI orally (21), minor haemorrhage (8), peptic ulcer prophylaxis in seriously unwell (6), major haemorrhage (4), dyspepsia (2), postoprative period following peptic ulcer surgery (2) and others (12). Endoscopy was performed in 10 patients (18%) with only 1 endoscopically treated peptic ulcer. Our data suggest significant inappropriate use of parenteral PPI, which may be used for minor GI bleeding and dyspepsia and are typically commenced prior to endoscopy. These findings can explain the costly hospital expenditure on PPI.