12 resultados para applied behavior analysis
em University of Queensland eSpace - Australia
Resumo:
Over the past 30 years, research in the area of applied behaviour. analysis has led to a rich knowledge and understanding of the variables that influence human behaviour. This understanding and knowledge has given rise to a range of assessment and intervention techniques that have been applied to individuals with challenging behaviour. Interventions have produced changes in the severity and frequency of behaviours such as self-injury, aggression, and property destruction, card have also led to the acquisition of desired behaviours. While behaviour change has been achieved, families have expressed a desire for positive behaviour support approaches that adopt a family,focus. Research and development of support frameworks that emphasise the interrelatedness of family members, and the child with a disability as part of his or her family, have gained prominence in the family systems literature. The present paper reviews some of the behaviourally based research in this area. Through the use of a case illustration, the authors discuss the links between behavioural support and family-centred support systems for children with developmental disabilities. Theoretical and practical implications are considered and areas for future research are highlighted.
Resumo:
The PEG-Ficoll polymer phase system is one that has been overlooked in the past for biotechnology applications because of the stability of its emulsions. However, new applications, such as emulsion coating of cells, are appearing that rely on this very property. Ficoll is highly polydisperse and multimodal with three distinct Ficoll peaks in gel permeation chromatography. As a result, the transition between one-phase and two-phase systems is blurred and the binodials obtained through turbidometric titration and tie-line analysis differ significantly. Moreover, since the three Ficoll peaks partition differently, tie-line analysis cannot be described by a simple model of the aqueous two-phase system. A simple modification to the model allowed for excellent fit, and this modification may prove well-suited for the many practical cases where aqueous two-phase systems fail to display parallel tie-lines as implicitly assumed in the simpler model.
Resumo:
The aerated stirred reactor (ASR) has been widely used in biochemical and wastewater treatment processes. The information describing how the activated sludge properties and operation conditions affect the hydrodynamics and mass transfer coefficient is missing in the literature. The aim of this study was to investigate the influence of flow regime, superficial gas velocity (U-G), power consumption unit (P/V-L), sludge loading, and apparent viscosity (pap) of activated sludge fluid on the mixing time (t(m)), gas hold-up (epsilon), and volumetric mass transfer coefficient (kLa) in an activated sludge aerated stirred column reactor (ASCR). The activated sludge fluid performed a non-Newtonian rheological behavior. The sludge loading significantly affected the fluid hydrodynamics and mass transfer. With an increase in the UG and P/V-L, the epsilon and k(L)a increased, and the t(m), decreased. The E, kLa, and tm,were influenced dramatically as the flow regime changed from homogeneous to heterogeneous patterns. The proposed mathematical models predicted the experimental results well under experimental conditions, indicating that the U-G, P/V-L, and mu(ap) had significant impact on the t(m) epsilon, and k(L)a. These models were able to give the tm, F, and kLa values with an error around +/- 8%, and always less than +/- 10%. (c) 2005 Wiley Periodicals, Inc.
Resumo:
Background: The aim of this study was to determine the effects of carvedilol on the costs related to the treatment of severe chronic heart failure (CHF). Methods: Costs for the treatment for heart failure within the National Health Service (NHS) in the United Kingdom (UK) were applied to resource utilisation data prospectively collected in all patients randomized into the Carvedilol Prospective Randomized Cumulative Survival (COPERNICUS) Study. Unit-specific, per them (hospital bed day) costs were used to calculate expenditures due to hospitalizations. We also included costs of carvedilol treatment, general practitioner surgery/office visits, hospital out-patient clinic visits and nursing home care based on estimates derived from validated patterns of clinical practice in the UK. Results: The estimated cost of carvedilol therapy and related ambulatory care for the 1156 patients assigned to active treatment was 530,771 pound (44.89 pound per patient/month of follow-up). However, patients assigned to carvedilol were hospitalised less often and accumulated fewer and less expensive days of admission. Consequently, the total estimated cost of hospital care was 3.49 pound million in the carvedilol group compared with 4.24 pound million for the 1133 patients in the placebo arm. The cost of post-discharge care was also less in the carvedilol than in the placebo group (479,200 pound vs. 548,300) pound. Overall, the cost per patient treated in the carvedilol group was 3948 pound compared to 4279 pound in the placebo group. This equated to a cost of 385.98 pound vs. 434.18 pound, respectively, per patient/month of follow-up: an 11.1% reduction in health care costs in favour of carvedilol. Conclusions: These findings suggest that not only can carvedilol treatment increase survival and reduce hospital admissions in patients with severe CHF but that it can also cut costs in the process.
Resumo:
Time period analysis was used in an international sample of clients ( N = 106) to demonstrate that cognitive - behavioral therapy (CBT) for panic disorder is associated with specific changes in both negative and positive cognitions during the treatment period. In the first 6 weeks of the treatment phase, working alliance failed to predict changes in panic severity, whereas changes in panic self-efficacy and catastrophic misinterpretation of bodily sensations predicted rapid symptom relief. In the last 6 weeks of treatment, higher doses of CBT were associated with further changes in positive and negative cognitions. The findings can be interpreted as suggesting that the role of the working alliance in CBT for panic disorder is to facilitate cognitive change.
Resumo:
Melnikov's method is used to analytically predict the onset of chaotic instability in a rotating body with internal energy dissipation. The model has been found to exhibit chaotic instability when a harmonic disturbance torque is applied to the system for a range of forcing amplitude and frequency. Such a model may be considered to be representative of the dynamical behavior of a number of physical systems such as a spinning spacecraft. In spacecraft, disturbance torques may arise under malfunction of the control system, from an unbalanced rotor, from vibrations in appendages or from orbital variations. Chaotic instabilities arising from such disturbances could introduce uncertainties and irregularities into the motion of the multibody system and consequently could have disastrous effects on its intended operation. A comprehensive stability analysis is performed and regions of nonlinear behavior are identified. Subsequently, the closed form analytical solution for the unperturbed system is obtained in order to identify homoclinic orbits. Melnikov's method is then applied on the system once transformed into Hamiltonian form. The resulting analytical criterion for the onset of chaotic instability is obtained in terms of critical system parameters. The sufficient criterion is shown to be a useful predictor of the phenomenon via comparisons with numerical results. Finally, for the purposes of providing a complete, self-contained investigation of this fundamental system, the control of chaotic instability is demonstated using Lyapunov's method.
Resumo:
This research used resource allocation theory to generate predictions regarding dynamic relationships between self-efficacy and task performance from 2 levels of analysis and specificity. Participants were given multiple trials of practice on an air traffic control task. Measures of task-specific self-efficacy and performance were taken at repeated intervals. The authors used multilevel analysis to demonstrate differential and dynamic effects. As predicted, task-specific self-efficacy was negatively associated with task performance at the within-person level. On the other hand, average levels of task-specific self-efficacy were positively related to performance at the between-persons level and mediated the effect of general self-efficacy. The key findings from this research relate to dynamic effects - these results show that self-efficacy effects can change over time, but it depends on the level of analysis and specificity at which self-efficacy is conceptualized. These novel findings emphasize the importance of conceptualizing self-efficacy within a multilevel and multispecificity framework and make a significant contribution to understanding the way this construct relates to task performance.
Resumo:
Developing the social identity theory of leadership (e.g., [Hogg, M. A. (2001). A social identity theory of leadership. Personality and Social Psychology Review, 5, 184-200]), an experiment (N=257) tested the hypothesis that as group members identify more strongly with their group (salience) their evaluations of leadership effectiveness become more strongly influenced by the extent to which their demographic stereotype-based impressions of their leader match the norm of the group (prototypicality). Participants, with more or less traditional gender attitudes (orientation), were members, under high or low group salience conditions (salience), of non-interactive laboratory groups that had instrumental or expressive group norms (norm), and a male or female leader (leader gender). As predicted, these four variables interacted significantly to affect perceptions of leadership effectiveness. Reconfiguration of the eight conditions formed by orientation, norm and leader gender produced a single prototypicality variable. Irrespective of participant gender, prototypical leaders were considered more effective in high then low salience groups, and in high salience groups prototypical leaders were more effective than less prototypical leaders. Alternative explanations based on status characteristics and role incongruity theory do not account well for the findings. Implications of these results for the glass ceiling effect and for a wider social identity analysis of the impact of demographic group membership on leadership in small groups are discussed. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
A unique hand-held gene gun is employed for ballistically delivering biomolecules to key cells in the skin and mucosa in the treatment of the major diseases. One of these types of devices, called the Contoured Shock Tube (CST), delivers powdered micro-particles to the skin with a narrow and highly controllable velocity distribution and a nominally uniform spatial distribution. In this paper, we apply a numerical approach to gain new insights in to the behavior of the CST prototype device. The drag correlations proposed by Henderson (1976), Igra and Takayama (1993) and Kurian and Das (1997) were applied to predict the micro-particle transport in a numerically simulated gas flow. Simulated pressure histories agree well with the corresponding static and Pitot pressure measurements, validating the CFD approach. The calculated velocity distributions show a good agreement, with the best prediction from Igra & Takayama correlation (maximum discrepancy of 5%). Key features of the gas dynamics and gas-particle interaction are discussed. Statistic analyses show a tight free-jet particle velocity distribution is achieved (570 +/- 14.7 m/s) for polystyrene particles (39 +/- 1 mu m), representative of a drug payload.
Resumo:
Formal methods have significant benefits for developing safety critical systems, in that they allow for correctness proofs, model checking safety and liveness properties, deadlock checking, etc. However, formal methods do not scale very well and demand specialist skills, when developing real-world systems. For these reasons, development and analysis of large-scale safety critical systems will require effective integration of formal and informal methods. In this paper, we use such an integrative approach to automate Failure Modes and Effects Analysis (FMEA), a widely used system safety analysis technique, using a high-level graphical modelling notation (Behavior Trees) and model checking. We inject component failure modes into the Behavior Trees and translate the resulting Behavior Trees to SAL code. This enables us to model check if the system in the presence of these faults satisfies its safety properties, specified by temporal logic formulas. The benefit of this process is tool support that automates the tedious and error-prone aspects of FMEA.