73 resultados para application technique
em University of Queensland eSpace - Australia
Resumo:
The use of gate-to-drain capacitance (C-gd) measurement as a tool to characterize hot-carrier-induced charge centers in submicron n- and p-MOSFET's has been reviewed and demonstrated. By analyzing the change in C-gd measured at room and cryogenic temperature before and after high gate-to-drain transverse field (high field) and maximum substrate current (I-bmax) stress, it is concluded that the degradation was found to be mostly due to trapping of majority carriers and generation of interface states. These interface states were found to be acceptor states at top half of band gap for n-MOSFETs and donor states at bottom half of band gap for p-MOSFETs. In general, hot electrons are more likely to be trapped in gate oxide as compared to hot holes while the presence of hot holes generates more interface states. Also, we have demonstrated a new method for extracting the spatial distribution of oxide trapped charge, Q(ot), through gate-to-substrate capacitance (C-gb) measurement. This method is simple to implement and does not require additional information from simulation or detailed knowledge of the device's structure. (C) 2001 Elsevier Science Ltd. All rights reserved.
Resumo:
Current noninvasive techniques for the routine and frequent quantification of peripheral lymphedema in patients are total limb volume measurement (by water immersion or by circumferential measurements) and bioelectrical impedance analysis (BIA). However both of these techniques require standardizing the measurement using a contralateral measurement from the unaffected limb, Hence these techniques are essentially restricted to unilateral lymphedema. This paper describes the results from a preliminary study to investigate an alternative approach to the analysis of the data from multiple frequency BIA to produce an index of lymphedema without the need for normalization to another body segment. Twenty patients receiving surgical treatment for breast cancer were monitored prior to surgery and again after diagnosis with unilateral lymphedema. The data recorded were total limb volume, by circumferential measurements; and BIA measurements of both limbs. From these measurements total limb volumes and extracellular fluid volumes were calculated and expressed as ratios of the affected limb to that of the unaffected limb. An index of the ratio of the extracellular fluid volume to the intracellular fluid volume was determined. This ECW/ICW index was calculated for both the affected and unaffected limbs at both measurement times. Results confirmed that the established techniques of total limb volume and extracellular fluid volume normalized to the unaffected contralateral limb were accurate in the detection of lymphedema (p < 10(-6)). Comparison of the ECW/ICW index from the affected limb after diagnosis with that from the pre-surgery measurement revealed a significant (p< 10(-6)) and considerable (75%) increase. The results of this pilot study suggest that by using multiple frequency bioelectrical impedance analysis, an index of the ECW/ICW ratio can be obtained and this index appears to have an equal, or better, sensitivity, than the other techniques in detecting lymphedema. More importantly, this index does not require normalization to another body segment and can be used to detect all types of peripheral edema including both unilateral and bilateral lymphedema.
Resumo:
Apart from their veterinary importance, the hookworms Ancylostoma caninum, Ancylostoma braziliense and Ancylostoma caninum are also capable of causing zoonotic disease in humans. A highly sensitive and species-specific PCR-RFLP technique was utilised to detect and differentiate the various canine Ancylostoma spp directly from eggs in faeces. This technique was utilised to screen 101 canine faecal samples from parasite endemic tea growing communities in Assam, India, as part as an ongoing epidemiological investigation into canine parasitic zoonoses. The prevalence of hookworms in dogs was found to be 98% using a combination of PCR and conventional microscopy. Overall, 36% of dogs were found positive for single hookworm infections with A. caninum, 24% positive for single infections with A. braziliense and 38% had mixed infections with both A. caninum and A. braziliense. No dogs were found positive for A. ceylanicum in the community under study. The high prevalence of A. caninum and A. braziliense in dogs in this community may account for the high incidence of cutaneous larva migrans (CLM) observed among the human population residing at the tea estates. The PCR-RFLP technique described herein allows epidemiological screening of canine hookworms to be conducted rapidly, with ease and accuracy, and has the potential to be applied to a number of different clinical, pharmacological and epidemiological situations. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Petrov-Galerkin methods are known to be versatile techniques for the solution of a wide variety of convection-dispersion transport problems, including those involving steep gradients. but have hitherto received little attention by chemical engineers. We illustrate the technique by means of the well-known problem of simultaneous diffusion and adsorption in a spherical sorbent pellet comprised of spherical, non-overlapping microparticles of uniform size and investigate the uptake dynamics. Solutions to adsorption problems exhibit steep gradients when macropore diffusion controls or micropore diffusion controls, and the application of classical numerical methods to such problems can present difficulties. In this paper, a semi-discrete Petrov-Galerkin finite element method for numerically solving adsorption problems with steep gradients in bidisperse solids is presented. The numerical solution was found to match the analytical solution when the adsorption isotherm is linear and the diffusivities are constant. Computed results for the Langmuir isotherm and non-constant diffusivity in microparticle are numerically evaluated for comparison with results of a fitted-mesh collocation method, which was proposed by Liu and Bhatia (Comput. Chem. Engng. 23 (1999) 933-943). The new method is simple, highly efficient, and well-suited to a variety of adsorption and desorption problems involving steep gradients. (C) 2001 Elsevier Science Ltd. All rights reserved.
Unexpected clobetasol propionate profile in human stratum corneum after topical application in vitro
Resumo:
Purpose. The validity of using drug amount-depth profiles in stratum corneum to predict uptake of clobetasol propionate into stratum corneum and its transport into deeper skin layers was investigated. Methods. In vitro diffusion experiments through human epidermis were carried out using Franz-type glass diffusion cells. A saturated solution of clobetasol propionate in 20% (V/V) aqueous propylene glycol was topically applied for 48 h. Steady state flux was calculated from the cumulative amount of drug permeated vs. time profile. Epidermal partitioning was conducted by applying a saturated drug solution to both sides of the epidermis and allowing time to equilibrate. The tape stripping technique was used to define drug concentration-depth profiles in stratum corneum for both the diffusion and equilibrium experiments. Results. The concentration-depth profile of clobetasol propionate in stratum corneum for the diffusion experiment is biphasic. A logarithmic decline of the drug concentration over the first four to five tape strips flattens to a relatively constant low concentration level in deeper layers. The drug concentration-depth profile for the equilibrium studies displays a similar shape. Conclusions. The shape of the concentration-depth profile of clobetasol propionate is mainly because of the variable partitioning coefficient in different stratum corneum layers.
Resumo:
We consider pure continuous variable entanglement with non-equal correlations between orthogonal quadratures. We introduce a simple protocol which equates these correlations and in the process transforms the entanglement onto a state with the minimum allowed number of photons. As an example we show that our protocol transforms, through unitary local operations, a single squeezed beam split on a beam splitter into the same entanglement that is produced when two squeezed beams are mixed orthogonally. We demonstrate that this technique can in principle facilitate perfect teleportation utilizing only one squeezed beam.
Resumo:
Thirty-nine trace elements of the Song-Yuan period (960-1368 AD) porcelain bodies from Cizhou, Jizhou and Longquanwu kilns were analyzed with ICP-MS, a technique rarely used in Chinese archaeometry, to investigate its potential application in such studies. Trace element compositions clearly reflect the distinctive raw materials and their mineralogy at the three kilns and allow their products to be distinguished. Significant chemical variations are also observed between Yuan and Song-Jing dynasties samples from Cizhou as well as fine and coarse porcelain bodies from Longquanwu. In Cizhou, porcelains of better quality which imitate the famous Ding kiln have trace element features distinctive from ordinary Cizhou products, that indicates geochemically distinctive raw materials were used and which possibly also underwent extra refining prior to use. The distinct trace element features of different kilns and the various types of porcelains from an individual kiln can be interpreted from a geochemical perspective. ICP-MS can provide a large amount of valuable information about ancient Chinese ceramics as it is capable of analyzing >40 elements with a typical of precision < 2%.
Resumo:
Advances in molecular biology have given us a wide range of protein and peptide-based drugs that are unsuitable for oral delivery because of their high degree of first-pass metabolism. Though parenteral delivery is the obvious answer, for the successful development of commercial chronic and self-administration usage formulations it is not the ideal choice. Transdermal delivery is emerging as the biggest application target for these agents, however, the skin is extremely efficient at keeping out such large molecular weight compounds and therapeutic levels are never going to be realistically achieved by passive absorption. Physical enhancement mechanisms including: iontophoresis, electroporation, ultrasound, photomechanical waves, microneedles and jet-propelled particles are emerging as solutions to this topical delivery dilemma. Adding proteins and peptides to the list of other large molecular weight drugs with insufficient passive transdermal fluxes to be therapeutically useful, we have a collection of pharmacological agents waiting for efficient delivery methods to be introduced. This article reviews the current state of physical transdermal delivery technology, assesses the pros and cons of each technique and summarises the evidence-base of their drug delivery capabilities.
Resumo:
A modified-templated- hydrothermal technique was used to prepare mesoporous titania powders through the interaction of tiny anatase seeds (
Resumo:
Photo-electron spectroscopy as an analytical tool has only received limited interest in the field of mineral science. Photo-electron spectroscopy, together with Auger electron spectroscopy, gives information about the positions of the energy levels in atoms or molecules. Application of this technique on solid materials will result in information of the band structure of these materials. The principle of photo electron spectroscopy is rather simple: photons with certain energy (wavelength) are allowed to collide with an atom, molecule or a solid material. These photons can then interact with electrons present in the atoms and one of these electrons can be excited from its orbital resulting in a situation similar to a free electron plus a positively charged atom or molecule.
Resumo:
Support vector machines (SVMs) have recently emerged as a powerful technique for solving problems in pattern classification and regression. Best performance is obtained from the SVM its parameters have their values optimally set. In practice, good parameter settings are usually obtained by a lengthy process of trial and error. This paper describes the use of genetic algorithm to evolve these parameter settings for an application in mobile robotics.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
The classical model of surface layering followed by capillary condensation during adsorption in mesopores, is modified here by consideration of the adsorbate solid interaction potential. The new theory accurately predicts the capillary coexistence curve as well as pore criticality, matching that predicted by density functional theory. The model also satisfactorily predicts the isotherm for nitrogen adsorption at 77.4 K on MCM-41 material of various pore sizes, synthesized and characterized in our laboratory, including the multilayer region, using only data on the variation of condensation pressures with pore diameter. The results indicate a minimum mesopore diameter for the surface layering model to hold as 14.1 Å, below which size micropore filling must occur, and a minimum pore diameter for mechanical stability of the hemispherical meniscus during desorption as 34.2 Å. For pores in-between these two sizes reversible condensation is predicted to occur, in accord with the experimental data for nitrogen adsorption on MCM-41 at 77.4 K.