2 resultados para apollonian packings

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Let T be a partial latin square and L be a latin square with T subset of L. We say that T is a latin trade if there exists a partial latin square T' with T' boolean AND T = theta such that (LT) U T' is a latin square. A k-homogeneous latin trade is one which intersects each row, each column and each entry either 0 or k times. In this paper, we construct 3-homogeneous latin trades from hexagonal packings of the plane with circles. We show that 3-homogeneous latin trades of size 3 m exist for each m >= 3. This paper discusses existence results for latin trades and provides a glueing construction which is subsequently used to construct all latin trades of finite order greater than three. Crown Copyright (c) 2005 Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A maximum packing of any lambda-fold complete multipartite graph (where there are lambda edges between any two vertices in different parts) with edge-disjoint 4- cycles is obtained and the size of each minimum leave is given. Moreover, when lambda =2, maximum 4-cycle packings are found for all possible leaves.