8 resultados para antioxidant substances
em University of Queensland eSpace - Australia
Resumo:
Eight thia fatty acids and other sulfides have been studied as inhibitors of autoxidation of arachidonic acid. The inhibitors extend the lag phase of the oxidation, to varying degrees. A carboxyl group in the vicinity of the sulfur reduces the antioxidant activity, while unsaturated sulfides are more effective than their saturated analogues. The results are consistent with the sulfides acting to reduce fatty acid hydroperoxides, which otherwise accumulate during the early stages of reaction and propagate the free-radical oxidation process.
Resumo:
Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 It recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
Activated sludge floes are a flocculated mass of microorganisms, extracellular polymeric substances (EPS) and adsorbed organic and inorganic material. The structure of the floes is very heterogeneous and floes with very different properties and morphologies may occur, depending on the conditions in the activated sludge treatment plant and wastewater composition. Present thinking suggests that cations, such as calcium, create cationic bridges with EPS excreted by the bacteria and thereby hold the various floe constituents together. However, due to the complex and heterogeneous nature of activated sludge, the mechanisms have neither been thoroughly investigated nor successfully quantified. A better understanding and description of the biological flocculation process is necessary in order to establish more efficient operational strategies. The main aim of this study was to get a comprehensive and unique insight into the floe properties of activated sludge and to assess the relative impact of chemical and physical parameters. A variety of sludges from full scale treatment plants with different settling properties were characterised. The interrelationships between floe parameters such as composition of EPS, surface properties and floe structure, and their effect on the flocculation and separation properties were assessed. The results indicate that the EPS, both in terms of quantity and quality, are very important for the floe properties of the activated sludge. However, presence of filaments may alter the physical properties of the floes considerably. The EPS showed positive correlations to sludge volume index (SVI) if only sludges with low or moderate numbers of filaments were included. The surface properties were more affected by the composition of the EPS than by the number of filaments. The EPS showed positive correlation to negative surface charge and a negative correlation to relative hydrophobicity and flocculation ability. The negative correlation between flocculation ability and amount of EPS was surprising. The shear sensitivity, measured as degree of erosion of floes when subjected to shear, was more affected by floe size and number of filaments than amount of EPS.