17 resultados para annual energy production
em University of Queensland eSpace - Australia
Resumo:
A novel method that relies on the decoupling of the energy production and biosynthesis processes was used to characterise the maintenance, cell lysis and growth processes of Nitrosomonas sp. A Nitrosolnonas culture was enriched in a sequencing batch reactor (SBR) with ammonium as the sole energy source. Fluorescent in situ hybridization (FISH) showed that Nitrosomonas bound to the NEU probe constituted 82% of the bacterial population, while no other known ammonium or nitrite oxidizing bacteria were detected. Batch tests were carried out under conditions that both ammonium and CO, were in excess, and in the absence of one of these two substrates. The oxygen uptake rate and nitrite production rate were measured during these batch tests. The results obtained from these batch tests, along with the SBR performance data, allowed the determination of the maintenance coefficient and the in situ cell lysis rate, as well as the maximum specific growth rate of the Nitrosomonas culture. It is shown that, during normal growth, the Nitrosomonas culture spends approximately 65% of the energy generated for maintenance. The maintenance coefficient was determined to be 0.14 - 0.16 mgN mgCOD(biomass)(-1) h(-1), and was shown to be independent of the specific growth rate. The in situ lysis rate and the maximum specific growth rate of the Nitrosomonas culture were determined to be 0.26 and 1.0 day(-1) (0.043 h(-1)), respectively, under aerobic conditions at 30 degrees C and pH7. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Error condition detected Although coal may be viewed as a dirty fuel due to its high greenhouse emissions when combusted, a strong case can be made for coal to be a major world source of clean H-2 energy. Apart from the fact that resources of coal will outlast oil and natural gas by centuries, there is a shift towards developing environmentally benign coal technologies, which can lead to high energy conversion efficiencies and low air pollution emissions as compared to conventional coal fired power generation plant. There are currently several world research and industrial development projects in the areas of Integrated Gasification Combined Cycles (IGCC) and Integrated Gasification Fuel Cell (IGFC) systems. In such systems, there is a need to integrate complex unit operations including gasifiers, gas separation and cleaning units, water gas shift reactors, turbines, heat exchangers, steam generators and fuel cells. IGFC systems tested in the USA, Europe and Japan employing gasifiers (Texaco, Lurgi and Eagle) and fuel cells have resulted in energy conversions at efficiency of 47.5% (HHV) which is much higher than the 30-35% efficiency of conventional coal fired power generation. Solid oxide fuel cells (SOFC) and molten carbonate fuel cells (MCFC) are the front runners in energy production from coal gases. These fuel cells can operate at high temperatures and are robust to gas poisoning impurities. IGCC and IGFC technologies are expensive and currently economically uncompetitive as compared to established and mature power generation technology. However, further efficiency and technology improvements coupled with world pressures on limitation of greenhouse gases and other gaseous pollutants could make IGCC/IGFC technically and economically viable for hydrogen production and utilisation in clean and environmentally benign energy systems. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Six men were studied during four 30-s all-out exercise bouts on an air-braked cycle ergometer. The first three exercise bouts were separated by 4 min of passive recovery; after the third bout, subjects rested for 4 min, exercised for 30 min at 30-35% peak O-2 consumption, and rested for a further 60 min before completing the fourth exercise bout. Peak power and total work were reduced (P < 0.05) during bout 3 [765 +/- 60 (SE) W; 15.8 +/- 1.0 kJ] compared with bout 1 (1,168 +/- 55 mT, 23.8 +/- 1.2 kJ), but no difference in exercise performance was observed between bouts 1 and 4 (1,094 +/- 64 W, 23.2 +/- 1.4 kJ). Before bout 3, muscle ATP, creatine phosphate (CP), glycogen, pH, and sarcoplasmic reticulum (SR) Ca2+ uptake were reduced, while muscle lactate and inosine 5'-monophosphate were increased. Muscle ATP and glycogen before bout 4 remained lower than values before bout I (P < 0.05), but there were no differences in muscle inosine 5'-monophosphate, lactate, pH, and SR Ca2+ uptake. Muscle CP levels before bout 4 had increased above resting levels. Consistent with the decline in muscle ATP were increases in hypoxanthine and inosine before bouts 3 and 4. The decline in exercise performance does not appear to be related to a reduction in muscle glycogen. Instead, it may be caused by reduced CP availability, increased H+ concentration, impairment in SR function, or some other fatigue-inducing agent.
Resumo:
Chronic alcohol exposure induces lasting behavioral changes, tolerance, and dependence. This results, at least partially, from neural adaptations at a cellular level. Previous genome-wide gene expression studies using pooled human brain samples showed that alcohol abuse causes widespread changes in the pattern of gene expression in the frontal and motor cortices of human brain. Because these studies used pooled samples, they could not determine variability between different individuals. In the present study, we profiled gene expression levels of 14 postmortem human brains (seven controls and seven alcoholic cases) using cDNA microarrays (46 448 clones per array). Both frontal cortex and motor cortex brain regions were studied. The list of genes differentially expressed confirms and extends previous studies of alcohol responsive genes. Genes identified as differentially expressed in two brain regions fell generally into similar functional groups, including metabolism, immune response, cell survival, cell communication, signal transduction and energy production. Importantly, hierarchical clustering of differentially expressed genes accurately distinguished between control and alcoholic cases, particularly in the frontal cortex.
Resumo:
The leatherback turtle Dermochelys coriacea is considered to be at serious risk of global extinction, despite ongoing conservation efforts. Intensive long-term monitoring of a leatherback nesting population on Sandy Point (St. Croix, US Virgin Islands) offers a unique opportunity to quantify basic population parameters and evaluate effectiveness of nesting beach conservation practices. We report a significant increase in the number of females nesting annually from ca. 18-30 in the 1980s to 186 in 2001, with a corresponding increase in annual hatchling production from ca. 2000 to over 49,000. We then analyzed resighting data from 1991 to 2001 with an open robust-design capture-mark-recapture model to estimate annual nester survival and adult abundance for this population. The expected annual survival probability was estimated at ca. 0.893 (95% CL 0.87-0.92) and the population was estimated to be increasing ca. 13% pa since the early 1990s. Taken together with DNA fingerprinting that identify mother-daughter relations, our findings suggest that the increase in the size of the nesting population since 1991 was probably due to an aggressive program of beach protection and egg relocation initiated more than 20 years ago. Beach protection and egg relocation provide a simple and effective conservation strategy for this Northern Caribbean nesting population as long as adult survival at sea remains relatively high. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The molecular processes underlying alcohol dependence are not fully understood. Many characteristic behaviours result from neuroadaptations in the mesocorticolimbic system. In addition, alcoholism is associated with a distinct neuropathology. To elucidate the molecular basis of these features, we compared the RNA expression profile of the nucleus accumbens and prefrontal cortex of human brain from matched individual alcoholic and control cases using cDNA microarrays. Approximately 6% of genes with a marked alcohol response were common to the two brain regions. Alcohol-responsive genes were grouped into 11 functional categories. Predominant alcohol-responsive genes in the prefrontal cortex were those encoding DNA-binding proteins including transcription factors and repair proteins. There was also a down-regulation of genes encoding mitochondrial proteins, which could result in disrupted mitochondrial function and energy production leading to oxidative stress. Other alcohol-responsive genes in the prefrontal cortex were associated with neuroprotection/apoptosis. In contrast, in the nucleus accumbens, alcohol-responsive genes were associated with vesicle formation and regulation of cell architecture, which suggests a neuroadaptation to chronic alcohol exposure at the level of synaptic structure and function. Our data are in keeping with the previously reported alcoholism-related pathology characteristic of the prefrontal cortex, but suggest a persistent decrease in neurotransmission and changes in plasticity in the nucleus accumbens of the alcoholic.
Resumo:
Oxidoreductase enzymes catalyze single- or multi-electron reduction/oxidation reactions of small molecule inorganic or organic substrates, and they are integral to a wide variety of biological processes including respiration, energy production, biosynthesis, metabolism, and detoxification. All redox enzymes require a natural redox partner such as an electron-transfer protein ( e. g. cytochrome, ferredoxin, flavoprotein) or a small molecule cosubstrate ( e. g. NAD(P)H, dioxygen) to sustain catalysis, in effect to balance the substrate/product redox half-reaction. In principle, the natural electron-transfer partner may be replaced by an electrochemical working electrode. One of the great strengths of this approach is that the rate of catalysis ( equivalent to the observed electrochemical current) may be probed as a function of applied potential through linear sweep and cyclic voltammetry, and insight to the overall catalytic mechanism may be gained by a systematic electrochemical study coupled with theoretical analysis. In this review, the various approaches to enzyme electrochemistry will be discussed, including direct and indirect ( mediated) experiments, and a brief coverage of the theory relevant to these techniques will be presented. The importance of immobilizing enzymes on the electrode surface will be presented and the variety of ways that this may be done will be reviewed. The importance of chemical modification of the electrode surface in ensuring an environment conducive to a stable and active enzyme capable of functioning natively will be illustrated. Fundamental research into electrochemically driven enzyme catalysis has led to some remarkable practical applications. The glucose oxidase enzyme electrode is a spectacularly successful application of enzyme electrochemistry. Biosensors based on this technology are used worldwide by sufferers of diabetes to provide rapid and accurate analysis of blood glucose concentrations. Other applications of enzyme electrochemistry are in the sensing of macromolecular complexation events such as antigen - antibody binding and DNA hybridization. The review will include a selection of enzymes that have been successfully investigated by electrochemistry and, where appropriate, discuss their development towards practical biotechnological applications.
Resumo:
The mesocorticolimbic system is the reward centre of the brain and the major target for drugs of abuse including alcohol. Neuroadaptive changes in this region are thought to underlie the process of tolerance and dependence. Recently, several research groups have searched for alcohol-responsive genes using high-throughput microarrays and well-characterized human post-mortem material. Comparison of data from these studies of cortical regions highlights the differences in experimental approach and selection of cases. However, alcohol-responsive gene sets associated with transcription, oxidative stress and energy production were common to these studies. In marked contrast, alcohol-responsive genes in the nucleus accumbens and the ventral tegmental area are primarily associated with changes in neurotransmission and signal transduction. These data support the concept that, within cortical regions, changes in gene expression are associated with alcoholism-related pathology. In the dopaminergic tract of the mesocorticolimbic system, alcohol-responsive gene sets suggest long-term neuroplastic changes in synaptic transmission.
Resumo:
The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.
Resumo:
Rusa deer were introduced to Queensland in the 1970s and 1980s, and they now are about half of the farmed deer herd. Rusa tolerate the subtropical climatic and disease environments. Rusa venison has a low fat content and is acceptable to consumers. Protein and energy requirements are similar to values for other tropical deer. Growth may be limited by the low protein content of tropical grasses during winter. Rusa deer could contribute to the diversity of the Australian livestock industries.
Resumo:
The role of temperature and rainfall during seed development in modulating subsequent seed dormancy status was studied for Lolium rigidum Gaud. (annual ryegrass). Climatic parameters relating to geographic origin were compared with annual ryegrass seed dormancy characteristics for seeds collected from 12 sites across the southern Western Australian cropping region. Seed germination was tested soon after collection and periodically during subsequent after-ripening. Temperature in the year of seed development and long-term rainfall patterns showed correlations with aspects of seed dormancy, particularly the proportion of seeds remaining dormant following 5 months of after-ripening. Consequently, for one population the temperature (warm/cool) and water supply (adequate/reduced) during seed development were manipulated to investigate the role of maternal environment in the quantity and dormancy characteristics of seeds produced. Seeds from plants grown at warm temperatures were fewer in number, weighed less, and were less dormant than those from plants grown at cool temperature. Seeds that developed under both cool temperature and reduced moisture conditions lost dormancy faster than seeds from well-watered plants. Seed maturation environment, particularly temperature, can have a significant effect on annual ryegrass seed numbers and seed dormancy characteristics.
Resumo:
The effect of hydration (priming) treatment on dormancy release in annual ryegrass seeds from two populations was investigated. Hydration duration, number, and timing with respect to after-ripening were compared in an experiment involving 15 treatment regimens for 12 wk. Seeds were hydrated at 100% relative humidity for 0, 2, or 10 d at Weeks 1, 6, or 12 of after-ripening. Dormancy status was assessed after each hydration treatment by measuring seed germination at 12-hourly alternating 25/15 C (light/dark) periods using seeds directly from the hydration treatment and seeds subjected to 4 d postpriming desiccation. Seeds exposed to one or more hydration events during the 12 wk were less dormant than seeds that remained dry throughout after-ripening. The longer hydration of 10 d promoted greater dormancy loss than either a 2-d hydration or no hydration. For the seed lot that was most dormant at the start of the experiment, two or three rather than one hydration event or a hydration event earlier rather than later during after-ripening promoted greater dormancy release. These effects were not significant for the less-dormant seed lot. For both seed lots, the effect of a single hydration for 2 d at Week 1 or 6 of after-ripening was not manifested until the test at Week 12 of the experiment, suggesting that the hydration events alter the rate of dormancy release during subsequent after-ripening. A hydrothermal priming time model, usually used for modeling the effect of priming on germination rate of nondormant seeds, was successfully applied to dormancy release resulting from the hydration treatments.
Resumo:
Eggs from the Heron Island, Great Barrier Reef, nesting population of green turtles (Chelonia mydas) were incubated at all-male-determining (26 degreesC) and all-female-determining (30 degreesC) temperatures. Oxygen consumption and embryonic growth were monitored throughout incubation, and hatchling masses and body dimensions were measured from both temperatures. Eggs hatched after 79 and 53 days incubation at 26 degreesC and 30 degreesC respectively. Oxygen consumption at both temperatures increased to a peak several days before hatching, a pattern typical of turtle embryos, and the rate of oxygen was higher at 30 degreesC than 26 degreesC. The total amount of energy consumed during incubation, and hatchling dimensions, were similar at both temperatures, but hatchlings from 26 degreesC had larger mass, larger yolk-free mass and smaller residual yolks than hatchlings from 30 degreesC. Because of the difference in mass of hatchlings, hatchlings from 30 degreesC had a higher production cost.
Resumo:
Traffic and tillage effects on runoff and crop performance on a heavy clay soil were investigated over a period of 4 years. Tillage treatments and the cropping program were representative of broadacre grain production practice in northern Australia, and a split-plot design used to isolate traffic effects. Treatments subject to zero, minimum, and stubble mulch tillage each comprised pairs of 90-m 2 plots, from which runoff was recorded. A 3-m-wide controlled traffic system allowed one of each pair to be maintained as a non-wheeled plot, while the total surface area of the other received a single annual wheeling treatment from a working 100-kW tractor. Rainfall/runoff hydrographs demonstrate that wheeling produced a large and consistent increase in runoff, whereas tillage produced a smaller increase. Treatment effects were greater on dry soil, but were still maintained in large and intense rainfall events on wet soil. Mean annual runoff from wheeled plots was 63 mm (44%) greater than that from controlled traffic plots, whereas runoff from stubble mulch tillage plots was 38 mm (24%) greater than that from zero tillage plots. Traffic and tillage effects appeared to be cumulative, so the mean annual runoff from wheeled stubble mulch tilled plots, representing conventional cropping practice, was more than 100 mm greater than that from controlled traffic zero tilled plots, representing best practice. This increased infiltration was reflected in an increased yield of 16% compared with wheeled stubble mulch. Minimum tilled plots demonstrated a characteristic midway between that of zero and stubble mulch tillage. The results confirm that unnecessary energy dissipation in the soil during the traction process that normally accompanies tillage has a major negative effect on infiltration and crop productivity. Controlled traffic farming systems appear to be the only practicable solution to this problem.