9 resultados para annotate alpha helices
em University of Queensland eSpace - Australia
Resumo:
Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function. We previously reported* that 5-15 residue peptides, corresponding to the Zn-binding domain of thermolysin, react with [Pd(en)(ONO,),]in DMF-d’ and 90% H,O 10% DzO to form a 22-membered [Pd(en)(H*ELTH*)]2+ macrocycle that is helical in solution and acts as a template in nucleating helicity in both Cand N- terminal directions within the longer sequences in DMF. ~f~~&g7$$& d&qx~m ~. y AC&q& In water, however, there was less a-helicity observed, testifying to #..q,& &$--Lb &l-- &.$;,J~p?:~~q&~+~~ ’ w w the difficulty of fixing intramolecular amide NH...OC H-bonds in 6,“;;” ( k.$ U”C.a , p d$. competition with the H-bond donor solvent water. To expand the utility of [Pd(en)(H*XXXH*)]*+ as a helix- @r4”8 & oJ#:& &G& @-qd ,‘d@-gyp promoting module in solution, we now report the result that Ac- ‘$4: %$yyy + H*ELTH*H*VTDH*-NH,(l), AC-H*ELTH*AVTDYH*ELTH*- NH, (2) and AC-H*AAAH*H*ELTH*H*VTDH*-NH* (3) react with multiple equivalents of [Pd(en)(ONO,),] to produce exclusively 4-6 respectively in both DMF-d7 and water (90% Hz0 10% D,O). Mass spectrometry, 15N- and 2D ‘H- NMR spectroscopy, and CD spectra were used to characterise the structures 4-6, and their three dimensional structures were calculated from NOE restraints using simulated annealing protocols. Results demonstrate (a) selective coordination of metal ions at (i, i+4) histidine positions in water and DMF, (b) incorporation of 2 and 3 a turn-mimicking modules [Pd(en)(HELTH)]2+ in lo-15 residue peptides, and (c) facile conversion of unstructured peptides into 3- and 4- turn helices of macrocycles, with well defined a-helicity throughout and more structure in DMF than in water.
Resumo:
Cyclic pentapepticles are not known to exist in a-helical conformations. CD and NMR spectra show that specific 20-membered cyclic pentapepticles, Ac-(cyclo-1,5) [KxxxD]-NH2 and Ac-(cyclo-2,6)R[KxxxD]-NH2, are highly a-helical structures in water and independent of concentration, TFE, denaturants, and proteases. These are the smallest a-helical peptides in water.
Resumo:
Alpha helices are key structural components of proteins and important recognition motifs in biology. New techniques for stabilizing short peptide helices could be valuable for studying protein folding, modeling proteins, creating artificial proteins, and may aid the design of inhibitors or mimics of protein function.
Resumo:
Biological utilisation of copper requires that the metal, in its ionic forms, be meticulously transported, inserted into enzymes and regulatory proteins, and excess be excreted. To understand the trafficking process, it is crucial that the structures of the proteins involved in the varied processes be resolved. To investigate copper binding to a family of structurally related copper-binding proteins, we have characterised the second Menkes N-terminal domain (MNKr2). The structure, determined using H-1 and N-15 heteronuclear NMR, of the reduced form of MNKr2 has revealed two alpha-helices lying over a single beta-sheet and shows that the binding site, a Cys(X)(2)Cys pair, is located on an exposed loop. H-1-N-15 HSQC experiments demonstrate that binding of Cu(I) causes changes that are localised to conserved residues adjacent to the metal binding site. Residues in this area are important to the delivery of copper by the structurally related Cu(I) chaperones. Complementary site-directed mutagenesis of the adjacent residues has been used to probe the structural roles of conserved residues. (C) 2003 Published by Elsevier Inc.
Resumo:
We have determined the crystal structure of the core (C) protein from the Kunjin subtype of West Nile virus (WNV), closely related to the NY99 strain of WNV, currently a major health threat in the U.S. WNV is a member of the Flaviviridae family of enveloped RNA viruses that contains many important human pathogens. The C protein is associated with the RNA genome and forms the internal core which is surrounded by the envelope in the virion. The C protein structure contains four a. helices and forms dimers that are organized into tetramers. The tetramers form extended filamentous ribbons resembling the stacked alpha helices seen in HEAT protein structures.
Resumo:
Small molecules designed to mimic specific structural components of a protein (peptide strands, sheets, turns, helices, or amino acids) can be expected to display agonist or antagonist biological responses by virtue of interacting with the same receptors that recognize the protein. Here we describe some minimalist approaches to structural mimetics of amino acids and of strand, turn, or helix segments of proteins. The designed molecules show potent and selective inhibition of protease, transferase, and phospholipase enzymes, or antagonism of G-protein coupled or transcriptional receptors, and have potent anti-tumour, anti-inflammatory, or antiviral activity.
Resumo:
A major chemical challenge is the structural mimicry of discontinuous protein surfaces brought into close proximity through polypeptide folding. We report the design, synthesis, and solution structure of a highly functionalized saddle-shaped macrocyclic scaffold, constrained by oxazoles and thiazoles,upporting two short peptide loops projecting orthogonally from the same face of the scaffold. This structural mimetic of two interhelical loops of cytochrome b(562) illustrates a promising approach to structurally mimicking discontinuous loops of proteins.