7 resultados para ammonia removal

em University of Queensland eSpace - Australia


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nitrifying bacteria were selected from shrimp farm water and sediment (natural seed) in Thailand and from commercial seed cultures. The microbial consortia from each source giving the best ammonia removal during batch culture pre-enrichments were used as inocula for two sequencing batch reactors (SBRs). Nitrifiers were cultivated in the SBRs with 100 mg NH4-N/I and artificial wastewater containing 25 ppt salinity. The two SBRs were operated at a 7 d hydraulic retention time (HRT) for 77 d after which the HRT was reduced to 3.5 d. The amounts of ammonia removed from the influent by microorganisms sourced from the natural seed were 85% and 92% for the 7 d HIRT and the 3.5 d HRT, respectively. The ammonia removals of microbial consortia from the commercial seed were 71% and 83% for these HRTs respectively. The quantity of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) was determined in the SBRs using the most probable number (MPN) technique. Both AOB and NOB increased in number over the long-term operation of both SBRs. According to quantitative fluorescence in situ hybridisation (FISH) probing, AOB from the natural seed and commercial seed comprised 21 +/- 2% and 30 +/- 2%, respectively of all bacteria. NOB could not be detected with currently-reported FISH probes, suggesting that novel NOB were enriched from both sources. Taken collectively, the results from this study provide an indication that the nitrifiers from shrimp farm sources are more effective at ammonia removal than those from commercial seed cultures.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regular monitoring of wastewater characteristics is undertaken on most wastewater treatment plants. The data acquired during this process are usually filed and forgotten. However, systematic analysis of these data can provide useful insights into plant behaviour. Conventional graphical techniques are inadequate to give a good overall picture of how wastewater characteristics vary, with time and along the lagoon system. An approach based on the use of contour plots was devised that largely overcomes this problem. Superimposition of contour plots for different parameters can be used to gain a qualitative understanding of the nature and strength of relationships between the parameters. This is illustrated in an analysis of monitoring data for lagoon 115 East at the Western Treatment Plant, near Melbourne, Australia. In this illustrative analysis, relationships between ammonia removal rates and parameters such as chlorophyll a level and temperature are explored using a contour plot superimposition approach. It is concluded that this approach can help improve our understanding, not only of lagoon systems, but of other wastewater treatment systems as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Simultaneous nitrification and denitrification (SND) via the nitrite pathway and anaerobic-anoxic enhanced biological phosphorus removal (EBPR) are two processes that can significantly reduce the COD demand for nitrogen and phosphorus removal. The combination of these two processes has the potential of achieving simultaneous nitrogen and phosphorus removal with a minimal requirement for COD. A lab-scale sequencing batch reactor (SBR) was operated in alternating anaerobic-aerobic mode with a low dissolved oxygen concentration (DO, 0.5 mg/L) during the aerobic period, and was demonstrated to accomplish nitrification, denitrification and phosphorus removal. Under anaerobic conditions, COD was taken up and converted to polyhydroxyalkanoates (PHA), accompanied with phosphorus release. In the subsequent aerobic stage, PHA was oxidized and phosphorus was taken up to less than 0.5 mg/L at the end of the cycle. Ammonia was also oxidised during the aerobic period, but without accumulation of nitrite or nitrate in the system, indicating the occurrence of simultaneous nitrification and denitrification. However, off-gas analysis found that the final denitrification product was mainly nitrous oxide (N2O) not N-2. Further experimental results demonstrated that nitrogen removal was via nitrite, not nitrate. These experiments also showed that denitrifying glycogen.-accumulating organisms rather than denitrifying polyphosphate-accumulating organisms were responsible for the denitrification activity.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of acetate and propionate on the performance of a recently proposed and characterized photosynthetic biological sulfide removal system have been investigated with a view to predicting this concept's suitability for removing sulfide from wastewater undergoing or having undergone anaerobic treatment. The concept relies on substratum-irradiated biofilms dominated by green sulfur bacteria (GSB), which are supplied with radiant energy in the band 720 - 780 nm. A model reactor was fed for 7 months with a synthetic wastewater free of volatile fatty acids (VFAs), after which time intermittent dosing of the wastewater with acetate or propionate was begun. Such dosing suppressed the areal net sulfide removal rate by similar to50%, and caused the principal net product of sulfide removal to switch from sulfate to elemental-S. Similarly suppressed values of this rate were observed when the wastewater was dosed continuously with acetate, and this rate was not significantly affected by changes in the concentration of ammonia-N in the feed. The main net product of sulfide removal was again elemental-S, which was scarcely released into the liquid, however. Sulfate reduction and sulfur reduction were observed when the light supply was interrupted and were inferred to be occurring within the irradiated biofilm. A preexisting conceptual model of the biofilm was augmented with both of these reductive processes, and this augmented model was shown to account for most of the observed effects of VFA dosing. The implications of these findings for the practicality of the technology are considered. (C) 2004 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A lab-scale sequencing batch reactor was operated with alternating anoxic/aerobic conditions for nitrogen removal. Flocs and granules co-existed in the same reactor, with distinct aggregate structure and size, for over 180 days of reactor operation' Process data showed complete nitrogen removal, with temporary nitrite accumulation before full depletion of ammonia in the aerobic phase. Microbial quantification of the biomass by fluorescence in situ hybridisation showed that granules contained most of the nitrite-oxidising bacteria (NOB) whereas the ammonium-oxidising bacteria (AOB) seemed to be more abundant in the flocs. This was supported by microsensor measurements, which showed a higher potential of NO2- uptake than NH4 uptake in the granules. The segregation is possibly linked to the different growth rates of the two types of nitrifiers and the reactor operational conditions, which produced different sludge retention time for flocs and granules. The apparent physical separation of AOB and NOB in two growth forms could potentially affect mass transfer of NO2- from AOB to NOB, but the data presented here shows that it did not impact negatively on the overall nitrogen removal. (c) 2006 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The effects of free ammonia (FA; NH3) and free nitrous acid (FNA; HNO2) concentrations on the metabolisms of an enriched ammonia oxidizing bacteria (AOB) culture were investigated using a method allowing the decoupling of growth and energy generation processes. A lab-scale sequencing batch reactor (SBR) was operated for the enrichment of an AOB culture. Fluorescent in-situ hybridization (FISH) analysis showed that 82% of the bacterial population in the SBR bound to the NEU probe specifically designed for Nitrosomonas europaea. Batch tests were carried out to measure the oxygen and ammonium consumption rates by the culture at various FA and FNA levels, in the presence or absence of inorganic carbon (CO2, HCO3, and CO32-). It was revealed that FA of up to 16.0 mgNH(3)-N (.) L-1, which was the highest concentration used in this study, did not have any inhibitory effect on either the catabolic or anabolic processes of the Nitrosomonas culture. In contrast, FNA inhibited both the growth and energy production capabilities of the Nitrosomonas culture. The inhibition on growth initiated at approximately 0.10 mgHNO(2)-(NL-1)-L-., and the data suggested that the biosynthesis was completely stopped at an FNA concentration of 0.40 mgHNO(2)-N (.) L-1. The inhibition on energy generation initiated at a slightly lower level but the Nitrosomonas culture was still oxidizing ammonia at half of the maximum rate at an FNA concentration of 0.50-0.63 mgHNO(2)-N (.) L-1. The affinity constant of the Nitrosomonas culture with respect to ammonia was determined to be 0.36 mgNH3-N (.) L-1, independent of the presence or absence of inorganic carbon. (c) 2006 Wiley Periodicals, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The cause of seasonal failure of a nitrifying municipal landfill leachate treatment plant utilizing a fixed biofilm was investigated by wastewater analyses and batch respirometric tests at every treatment stage. Nitrification of the leachate treatment plant was severely affected by the seasonal temperature variation. High free ammonia (NH3-N) inhibited not only nitrite oxidizing bacteria (NOB) but also ammonia oxidizing bacteria (AOB). In addition, high pH also increased free ammonia concentration to inhibit nitrifying activity especially when the NH4-N level was high. The effects of temperature and free ammonia of landfill leachate on nitrification and nitrite accumulation were investigated with a semi-pilot scale biofilm airlift reactor. Nitrification rate of landfill leachate increased with temperature when free ammonia in the reactor was below the inhibition level for nitrifiers. Leachate was completely nitrified up to a load of 1.5 kg NH4-N m(-3) d(-1) at 28 degrees C. The activity of NOB was inhibited by NH3-N resulting in accumulation of nitrite. NOB activity decreased more than 50% at 0.7 mg NH3-N L-1. Fluorescence in situ hybridization (FISH) was carried out to analyze the population of AOB and NOB in the nitrite accumulating nitrifying biofilm. NOB were located close to AOB by forming small clusters. A significant fraction of AOB identified by probe Nso1225 specifically also hybridized with the Nitrosonlonas specific probe Nsm156. The main NOB were Nitrobacter and Nitrospira which were present in almost equal amounts in the biofilm as identified by simultaneous hybridization with Nitrobacter specific probe Nit3 and Nitrospira specific probe Ntspa662. (c) 2005 Elsevier Ltd. All rights reserved.