13 resultados para american gas market
em University of Queensland eSpace - Australia
Resumo:
The objective of this study is to examine the market valuation of environmental capital expenditure investment related to pollution abatement in the pulp and paper industry. The total environmental capital expenditure of $8.7 billion by our sample firms during 1989-2000 supports the focus on this industry. In order to be capitalized, an asset should be associated with future economic benefits. The existing environmental literature suggests that investors condition their evaluation of the future economic benefits arising from environmental capital expenditure on an assessment of the firms' environmental performance. This literature predicts the emergence of two environmental stereotypes: low-polluting firms that overcomply with existing environmental regulations, and high-polluting firms that just meet minimal environmental requirements. Our valuation evidence indicates that there are incremental economic benefits associated with environmental capital expenditure investment by low-polluting firms but not high-polluting firms. We also find that investors use environmental performance information to assess unbooked environmental liabilities, which we interpret to represent the future abatement spending obligations of high-polluting firms in the pulp and paper industry. We estimate average unbooked liabilities of $560 million for high-polluting firms, or 16.6 percent of market capitalization.
Resumo:
High-quality nanometer thick ultramicroporous membranes were prepared from silica sol-gel processes and tested for the permeation of binary gas mixtures of He, H-2, CO2, and CH4 across different temperature and partial pressure regimens. Pore size distribution by molecular probing showed that the majority of pore sizes had dimensions below 2.9 Angstrom. In 50:50 binary mixtures, the fluxes of gases increased as a function of temperature, indicating an activated transport mechanism. The ultramicroporous membranes showed high selectivities at 150 degreesC for He/CO2 (30), He/CH4 (93), H-2/CO2 (10), and H-2/CH4 (9) with lower selectivities for CO2/CH4 (5). High activation energies (E-a) were observed for the permeance of 50:50 binary mixtures containing He and H-2 of 22.1-27.5 and 17.6-23.1 kJ.mol(-1), respectively. The E-a for the permeance of the total mixture approached the E-a for the permeance of the molecule with the smaller kinetic diameter (He or H-2).
Resumo:
This paper examines the impact of multinational trade accords on the degree of stock market linkage using NAFTA as a case study. Besides liberalizing trade among the U.S., Canada and Mexico, NAFTA has also sought to strengthen linkage among stock markets of these countries. If successful, this could lessen the appeal of asset diversification across the North American region and promote a higher degree of market efficiency. We assess the possible impact of NAFTA on market linkage using cross-correlations, multivariate price cointegrating systems, speed of convergence, and generalized variance decompositions of unexpected stock returns. The evidence proves robust and consistently indicates intensified equity market linkage since the NAFTA accord. The results also suggest that interdependent goods markets in the region are a primary reason behind the stronger equity market linkage observed in the post-NAFTA period. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A dual resistance model with distribution of either barrier or pore diffusional activation energy is proposed in this work for gas transport in carbon molecular sieve (CMS) micropores. This is a novel approach in which the equilibrium is homogeneous, but the kinetics is heterogeneous. The model seems to provide a possible explanation for the concentration dependence of the thermodynamically corrected barrier and pore diffusion coefficients observed in previous studies from this laboratory on gas diffusion in CMS.(1.2) The energy distribution is assumed to follow the gamma distribution function. It is shown that the energy distribution model can fully capture the behavior described by the empirical model established in earlier studies to account for the concentration dependence of thermodynamically corrected barrier and pore diffusion coefficients. A methodology is proposed for extracting energy distribution parameters, and it is further shown that the extracted energy distribution parameters can effectively predict integral uptake and column breakthrough profiles over a wide range of operating pressures.
Resumo:
We apply the projected Gross-Pitaevskii equation (PGPE) formalism to the experimental problem of the shift in critical temperature T-c of a harmonically confined Bose gas as reported in Gerbier , Phys. Rev. Lett. 92, 030405 (2004). The PGPE method includes critical fluctuations and we find the results differ from various mean-field theories, and are in best agreement with experimental data. To unequivocally observe beyond mean-field effects, however, the experimental precision must either improve by an order of magnitude, or consider more strongly interacting systems. This is the first application of a classical field method to make quantitative comparison with experiment.
Resumo:
The low-energy properties of the one-dimensional anyon gas with a delta-function interaction are discussed in the context of its Bethe ansatz solution. It is found that the anyonic statistical parameter and the dynamical coupling constant induce Haldane exclusion statistics interpolating between bosons and fermions. Moreover, the anyonic parameter may trigger statistics beyond Fermi statistics for which the exclusion parameter alpha is greater than one. The Tonks-Girardeau and the weak coupling limits are discussed in detail. The results support the universal role of alpha in the dispersion relations.
Resumo:
We present theoretical predictions for the equation of state of a harmonically trapped Fermi gas in the unitary limit. Our calculations compare Monte Carlo results with the equation of state of a uniform gas using three distinct perturbation schemes. We show that in experiments the temperature can be usefully calibrated by making use of the entropy, which is invariant during an adiabatic conversion into the weakly interacting limit of molecular BEC. We predict the entropy dependence of the equation of state.
Resumo:
In a deregulated electricity market, optimizing dispatch capacity and transmission capacity are among the core concerns of market operators. Many market operators have capitalized on linear programming (LP) based methods to perform market dispatch operation in order to explore the computational efficiency of LP. In this paper, the search capability of genetic algorithms (GAs) is utilized to solve the market dispatch problem. The GA model is able to solve pool based capacity dispatch, while optimizing the interconnector transmission capacity. Case studies and corresponding analyses are performed to demonstrate the efficiency of the GA model.