131 resultados para algebraic dressing method
em University of Queensland eSpace - Australia
Resumo:
In this review we demonstrate how the algebraic Bethe ansatz is used for the calculation of the-energy spectra and form factors (operator matrix elements in the basis of Hamiltonian eigenstates) in exactly solvable quantum systems. As examples we apply the theory to several models of current interest in the study of Bose-Einstein condensates, which have been successfully created using ultracold dilute atomic gases. The first model we introduce describes Josephson tunnelling between two coupled Bose-Einstein condensates. It can be used not only for the study of tunnelling between condensates of atomic gases, but for solid state Josephson junctions and coupled Cooper pair boxes. The theory is also applicable to models of atomic-molecular Bose-Einstein condensates, with two examples given and analysed. Additionally, these same two models are relevant to studies in quantum optics; Finally, we discuss the model of Bardeen, Cooper and Schrieffer in this framework, which is appropriate for systems of ultracold fermionic atomic gases, as well as being applicable for the description of superconducting correlations in metallic grains with nanoscale dimensions.; In applying all the above models to. physical situations, the need for an exact analysis of small-scale systems is established due to large quantum fluctuations which render mean-field approaches inaccurate.
Resumo:
An integrable Kondo problem in the one-dimensional supersymmetric t-J model is studied by means of the boundary supersymmetric quantum inverse scattering method. The boundary K matrices depending on the local moments of the impurities are presented as a nontrivial realization of the graded reflection equation algebras in a two-dimensional impurity Hilbert space. Further, the model is solved by using the algebraic Bethe ansatz method and the Bethe ansatz equations are obtained. (C) 1999 Elsevier Science B.V.
Resumo:
This paper is devoted to the problems of finding the load flow feasibility, saddle node, and Hopf bifurcation boundaries in the space of power system parameters. The first part contains a review of the existing relevant approaches including not-so-well-known contributions from Russia. The second part presents a new robust method for finding the power system load flow feasibility boundary on the plane defined by any three vectors of dependent variables (nodal voltages), called the Delta plane. The method exploits some quadratic and linear properties of the load now equations and state matrices written in rectangular coordinates. An advantage of the method is that it does not require an iterative solution of nonlinear equations (except the eigenvalue problem). In addition to benefits for visualization, the method is a useful tool for topological studies of power system multiple solution structures and stability domains. Although the power system application is developed, the method can be equally efficient for any quadratic algebraic problem.
Resumo:
Nine classes of integrable open boundary conditions, further extending the one-dimensional U-q (gl (212)) extended Hubbard model, have been constructed previously by means of the boundary Z(2)-graded quantum inverse scattering method. The boundary systems are now solved by using the algebraic Bethe ansatz method, and the Bethe ansatz equations are obtained for all nine cases.
Resumo:
A loose abrasive lapping technology was developed for truing and dressing ultrafine diamond cup wheels for grinding spherical end faces of fibre optic connectors. The relative densities of exposed grits and grit pull-outs measured from wheel surfaces prepared using the loose abrasive lapping and the bonded abrasive dressing were compared. It was found that the lapping method with loose abrasives produced wheel surfaces with more exposed grits and less grit pull-outs, especially for finer grit size wheels. For dressing ultrafine grit size wheels, the particle size of the lapping paste should be smaller than the wheel grit size to achieve a better result. It is also found that the wheels dressed using the lapping method demonstrate an excellent grinding performance. (C) 2004 Elsevier B.V.. All rights reserved.
Resumo:
Integrable extended Hubbard models arising from symmetric group solutions are examined in the framework of the graded quantum inverse scattering method. The Bethe ansatz equations for all these models are derived by using the algebraic Bethe ansatz method.
Resumo:
High index Differential Algebraic Equations (DAEs) force standard numerical methods to lower order. Implicit Runge-Kutta methods such as RADAU5 handle high index problems but their fully implicit structure creates significant overhead costs for large problems. Singly Diagonally Implicit Runge-Kutta (SDIRK) methods offer lower costs for integration. This paper derives a four-stage, index 2 Explicit Singly Diagonally Implicit Runge-Kutta (ESDIRK) method. By introducing an explicit first stage, the method achieves second order stage calculations. After deriving and solving appropriate order conditions., numerical examples are used to test the proposed method using fixed and variable step size implementations. (C) 2001 IMACS. Published by Elsevier Science B.V. All rights reserved.
Resumo:
The Equilibrium Flux Method [1] is a kinetic theory based finite volume method for calculating the flow of a compressible ideal gas. It is shown here that, in effect, the method solves the Euler equations with added pseudo-dissipative terms and that it is a natural upwinding scheme. The method can be easily modified so that the flow of a chemically reacting gas mixture can be calculated. Results from the method for a one-dimensional non-equilibrium reacting flow are shown to agree well with a conventional continuum solution. Results are also presented for the calculation of a plane two-dimensional flow, at hypersonic speed, of a dissociating gas around a blunt-nosed body.
Resumo:
The level set method has been implemented in a computational volcanology context. New techniques are presented to solve the advection equation and the reinitialisation equation. These techniques are based upon an algorithm developed in the finite difference context, but are modified to take advantage of the robustness of the finite element method. The resulting algorithm is tested on a well documented Rayleigh–Taylor instability benchmark [19], and on an axisymmetric problem where the analytical solution is known. Finally, the algorithm is applied to a basic study of lava dome growth.
Resumo:
Inaccurate species identification confounds insect ecological studies. Examining aspects of Trichogramma ecology pertinent to the novel insect resistance management strategy for future transgenic cotton, Gossypium hirsutum L., production in the Ord River Irrigation Area (ORIA) of Western Australia required accurate differentiation between morphologically similar Trichogramma species. Established molecular diagnostic methods for Trichogramma identification use species-specific sequence difference in the internal transcribed spacer (ITS)-2 chromosomal region; yet, difficulties arise discerning polymerase chain reaction (PCR) fragments of similar base pair length by gel electrophoresis. This necessitates the restriction enzyme digestion of PCR-amplified ITS-2 fragments to readily differentiate Trichogramma australicum Girault and Trichogramma pretiosum Riley. To overcome the time and expense associated with a two-step diagnostic procedure, we developed a “one-step” multiplex PCR technique using species-specific primers designed to the ITS-2 region. This approach allowed for a high-throughput analysis of samples as part of ongoing ecological studies examining Trichogramma biological control potential in the ORIA where these two species occur in sympatry.
Resumo:
A narrow absorption feature in an atomic or molecular gas (such as iodine or methane) is used as the frequency reference in many stabilized lasers. As part of the stabilization scheme an optical frequency dither is applied to the laser. In optical heterodyne experiments, this dither is transferred to the RF beat signal, reducing the spectral power density and hence the signal to noise ratio over that in the absence of dither. We removed the dither by mixing the raw beat signal with a dithered local oscillator signal. When the dither waveform is matched to that of the reference laser the output signal from the mixer is rendered dither free. Application of this method to a Winters iodine-stabilized helium-neon laser reduced the bandwidth of the beat signal from 6 MHz to 390 kHz, thereby lowering the detection threshold from 5 pW of laser power to 3 pW. In addition, a simple signal detection model is developed which predicts similar threshold reductions.
Resumo:
Clifford Geertz was best known for his pioneering excursions into symbolic or interpretive anthropology, especially in relation to Indonesia. Less well recognised are his stimulating explorations of the modern economic history of Indonesia. His thinking on the interplay of economics and culture was most fully and vigorously expounded in Agricultural Involution. That book deployed a succinctly packaged past in order to solve a pressing contemporary puzzle, Java's enduring rural poverty and apparent social immobility. Initially greeted with acclaim, later and ironically the book stimulated the deep and multi-layered research that in fact led to the eventual rejection of Geertz's central contentions. But the veracity or otherwise of Geertz's inventive characterisation of Indonesian economic development now seems irrelevant; what is profoundly important is the extraordinary stimulus he gave to a generation of scholars to explore Indonesia's modern economic history with a depth and intensity previously unimaginable.
Resumo:
The Gaudin models based on the face-type elliptic quantum groups and the XYZ Gaudin models are studied. The Gaudin model Hamiltonians are constructed and are diagonalized by using the algebraic Bethe ansatz method. The corresponding face-type Knizhnik–Zamolodchikov equations and their solutions are given.
Resumo:
We show that integrability of the BCS model extends beyond Richardson's model (where all Cooper pair scatterings have equal coupling) to that of the Russian doll BCS model for which the couplings have a particular phase dependence that breaks time-reversal symmetry. This model is shown to be integrable using the quantum inverse scattering method, and the exact solution is obtained by means of the algebraic Bethe ansatz. The inverse problem of expressing local operators in terms of the global operators of the monodromy matrix is solved. This result is used to find a determinant formulation of a correlation function for fluctuations in the Cooper pair occupation numbers. These results are used to undertake exact numerical analysis for small systems at half-filling.
Resumo:
In this paper, we propose a fast adaptive importance sampling method for the efficient simulation of buffer overflow probabilities in queueing networks. The method comprises three stages. First, we estimate the minimum cross-entropy tilting parameter for a small buffer level; next, we use this as a starting value for the estimation of the optimal tilting parameter for the actual (large) buffer level. Finally, the tilting parameter just found is used to estimate the overflow probability of interest. We study various properties of the method in more detail for the M/M/1 queue and conjecture that similar properties also hold for quite general queueing networks. Numerical results support this conjecture and demonstrate the high efficiency of the proposed algorithm.