25 resultados para agricultural resources use efficiency

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper examines the challenges of water supply in agriculture, with particular emphasis on requirements of field crops, including maize. It places the issue of water supply to agriculture in the context of increasing demands for water from alternatives users, declining quality water, pressure of increasing population, all of which are placing stresses on water availability at local, regional and national levels. The paper also examines existing freshwater resources and the potential impact of climate change on water supply and distribution and consequential impact on water stress incidence in various parts of the globe. It examines competition for water in both industrialized and developing countries, with particular emphasis on the impacts on agriculture and food supplies. The challenge of water use efficiency (WUE) in agriculture is explored with discussion of agronomic, economic and physiological WUE concepts, with specific reference to maize.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The resource potential of shallow water tables for cropping systems has been investigated using the Australian sugar industry as a case study. Literature concerning shallow water table contributions to sugarcane crops has been summarised, and an assessment of required irrigation for water tables to depths of 2 m investigated using the SWIMv2.1 soil water balance model for three different soils. The study was undertaken because water availability is a major limitation for sugarcane and other crop production systems in Australia and knowledge on how best to incorporate upflow from water tables in irrigation scheduling is limited. Our results showed that for the three soils studied (representing a range of permeabilities as defined by near-saturated hydraulic conductivities), no irrigation would be required for static water tables within 1 m of the soil surface. Irrigation requirements when static water tables exceeded 1 m depth were dependent on the soil type and rooting characteristics (root depth and density). Our results also show that the near-saturated hydraulic conductivities are a better indicator of the ability of water tables below 1 m to supply sufficient upflow as opposed to soil textural classifications. We conclude that there is potential for reductions in irrigation and hence improvements in irrigation water use efficiency in areas where shallow water tables are a low salinity risk: either fresh, or the local hydrology results in net recharge. (C) 2003 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An expanding human population and associated demands for goods and services continues to exert an increasing pressure on ecological systems. Although the rate of expansion of agricultural lands has slowed since 1960, rapid deforestation still occurs in many tropical countries, including Colombia. However, the location and extent of deforestation and associated ecological impacts within tropical countries is often not well known. The primary aim of this study was to obtain an understanding of the spatial patterns of forest conversion for agricultural land uses in Colombia. We modeled native forest conversion in Colombia at regional and national-levels using logistic regression and classification trees. We investigated the impact of ignoring the regional variability of model parameters, and identified biophysical and socioeconomic factors that best explain the current spatial pattern and inter-regional variation in forest cover. We validated our predictions for the Amazon region using MODIS satellite imagery. The regional-level classification tree that accounted for regional heterogeneity had the greatest discrimination ability. Factors related to accessibility (distance to roads and towns) were related to the presence of forest cover, although this relationship varied regionally. In order to identify areas with a high risk of deforestation, we used predictions from the best model, refined by areas with rural population growth rates of > 2%. We ranked forest ecosystem types in terms of levels of threat of conversion. Our results provide useful inputs to planning for biodiversity conservation in Colombia, by identifying areas and ecosystem types that are vulnerable to deforestation. Several of the predicted deforestation hotspots coincide with areas that are outstanding in terms of biodiversity value.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Edible herbage production and water-use-efficiency of three tree legumes (Leucaena leucocephala cv. Tarramba, L. pallida x L. leucocephala (KX2) and Gliricidia sepium), cut at different times of the year (February, April, June and uncut) were compared in a semi-arid area of Timor Island, Indonesia. Cutting in the early and mid dry-season (April and June) resulted in higher total leaf production (P< 0.05) and water-use-efficiency (P< 0.05), than cutting late in the wet-season (February) or being left uncut. For the leucaena treatments removing leaf in the early to mid dry-season reduced transpiration, saving soil water for subsequent regrowth as evidenced by the higher relative water contents of leaves from these treatments. This cutting strategy can be applied to local farming conditions to increase the supply of feed for livestock during the dry season.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intensive animal industries create large volumes of nutrient rich effluent, which, if untreated, has the potential for substantial environmental degradation. Aquatic plants in aerobic lagoon systems have the potential to achieve inexpensive and efficient remediation of effluent, and to recover valuable nutrients that would otherwise be lost. Members of the family Lemnaceae (duckweeds) are widely used in lagoon systems, but despite their widespread use in the cleansing of sewage, only limited research has been conducted into their growth in highly eutrophic media, and little has been done to systematically distinguish between different types of media. This study examined the growth characteristics of duckweed in abattoir effluent, and explored possible ways of ameliorating the inhibitory factors to growth on this medium. A series of pot trials was conducted to test the tolerance of duckweed to abattoir effluent partially remediated by a sojourn in anaerobic fermentation ponds, both in its unmodified form, and after the addition of acid to manipulate pH, and the addition of bentonite. Unmodified abattoir effluent was highly toxic to duckweed, although duckweed remained viable and grew sub optimally in media with total ammonia nitrogen (TAN) concentrations of up to 100 mg/l. Duckweed also grew vigorously in effluent diluted 1:4 v/v, containing 56 mg TAN/L and also modified by addition of acid to decrease pH to 7 and by adding bentonite (0.5%).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plants accumulate isotopes of carbon at different rates because of discrimination against C-13 relative to C-12. In plants that fix carbon by the C-3 pathway, the amount of discrimination correlates negatively with transpiration efficiency (TE) where TE is the amount of dry matter accumulated per unit water transpired. Therefore, carbon isotope discrimination (Delta) has become a useful tool for selecting genotypes with improved TE and performance in dry environments. Surveys of 161 sunflower (Helianthus spp.) genotypes of diverse origin revealed a large and unprecedented range of genetic variation for Delta (19.5-23.8parts per thousand). A strong negative genetic correlation (r(g)) between TE and Delta (r(g) = -0.87, P < 0.001) was observed in glasshouse studies. Gas exchange measurements of field grown plants indicated that Delta was strongly correlated with stomatal conductance to water vapor (g), (r(g) 0.64, P < 0.01), and the ratio of net assimilation rate (A) to g, (r(g) = 0.86, P < 0.001), an instantaneous measure of TE. Genotype CMSHA89MAX1 had the lowest TE (and highest Delta) of all genotypes tested in these studies and low yields in hybrid combination. Backcrossing studies showed that the TE of this genotype was due to an adverse effect of the MAX1 cytoplasm, which was inherited from the diploid perennial H. maximiliani Schrader. Overall, these studies suggested that there is an excellent opportunity for breeders to develop sunflower germplasm with improved TE. This can be achieved, in part, by avoiding cytoplasms such as the MAX1 cytoplasm.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Limitations on maximum transpiration rates, which are commonly observed as midday stomatal closure, have been observed even under well-watered conditions. Such limitations may be caused by restricted hydraulic conductance in the plant or by limited supply of water to the plant from uptake by the roots. This behaviour would have the consequences of limiting photosynthetic rate, increasing transpiration efficiency, and conserving soil water. A key question is whether the conservation of water will be rewarded by sustained growth during seed fill and increased grain yield. This simulation analysis was undertaken to examine consequences on sorghum yield over several years when maximum transpiration rate was imposed in a model. Yields were simulated at four locations in the sorghum-growing area of Australia for 115 seasons at each location. Mean yield was increased slightly ( 5 - 7%) by setting maximum transpiration rate at 0.4 mm h(-1). However, the yield increase was mainly in the dry, low-yielding years in which growers may be more economically vulnerable. In years with yield less than similar to 450 g m(-2), the maximum transpiration rate trait resulted in yield increases of 9 - 13%. At higher yield levels, decreased yields were simulated. The yield responses to restricted maximum transpiration rate were associated with an increase in efficiency of water use. This arose because transpiration was reduced at times of the day when atmospheric demand was greatest. Depending on the risk attitude of growers, incorporation of a maximum transpiration rate trait in sorghum cultivars could be desirable to increase yields in dry years and improve water use efficiency and crop yield stability.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cereal-legume intercropping plays an important role in subsistence food production in developing countries, especially in situations of limited water resources. Crop simulation can be used to assess risk for intercrop productivity over time and space. In this study, a simple model for intercropping was developed for cereal and legume growth and yield, under semi-arid conditions. The model is based on radiation interception and use, and incorporates a water stress factor. Total dry matter and yield are functions of photosynthetically active radiation (PAR), the fraction of radiation intercepted and radiation use efficiency (RUE). One of two PAR sub-models was used to estimate PAR from solar radiation; either PAR is 50% of solar radiation or the ratio of PAR to solar radiation (PAR/SR) is a function of the clearness index (K-T). The fraction of radiation intercepted was calculated either based on Beer's Law with crop extinction coefficients (K) from field experiments or from previous reports. RUE was calculated as a function of available soil water to a depth of 900 mm (ASW). Either the soil water balance method or the decay curve approach was used to determine ASW. Thus, two alternatives for each of three factors, i.e., PAR/SR, K and ASW, were considered, giving eight possible models (2 methods x 3 factors). The model calibration and validation were carried out with maize-bean intercropping systems using data collected in a semi-arid region (Bloemfontein, Free State, South Africa) during seven growing seasons (1996/1997-2002/2003). The combination of PAR estimated from the clearness index, a crop extinction coefficient from the field experiment and the decay curve model gave the most reasonable and acceptable result. The intercrop model developed in this study is simple, so this modelling approach can be employed to develop other cereal-legume intercrop models for semi-arid regions. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We studied the relationships among plant and arbuscular mycorrhizal (AM) fungal diversity, and their effects on ecosystem function, in a series of replicate tropical forestry plots in the La Selva Biological Station, Costa Rica. Forestry plots were 12 yr old and were either monocultures of three tree species, or polycultures of the tree species with two additional understory species. Relationships among the AM fungal spore community, host species, plant community diversity and ecosystem phosphorus-use efficiency (PUE) and net primary productivity (NPP) were assessed. Analysis of the relative abundance of AM fungal spores found that host tree species had a significant effect on the AM fungal community, as did host plant community diversity (monocultures vs polycultures). The Shannon diversity index of the AM fungal spore community differed significantly among the three host tree species, but was not significantly different between monoculture and polyculture plots. Over all the plots, significant positive relationships were found between AM fungal diversity and ecosystem NPP, and between AM fungal community evenness and PUE. Relative abundance of two of the dominant AM fungal species also showed significant correlations with NPP and PUE. We conclude that the AM fungal community composition in tropical forests is sensitive to host species, and provide evidence supporting the hypothesis that the diversity of AM fungi in tropical forests and ecosystem NPP covaries.