104 resultados para adhesion patterns
em University of Queensland eSpace - Australia
Resumo:
Background and Objectives: Selection of suitable treatment for early gastric cancers, such as endoscopic mucosal resection or the major surgical option of resection of the cancer together with a radical lymph node dissection, may be assisted by comparing the growth characteristics of the cancer with selected molecular characteristics. The results could be used to predict those cases that have a higher risk of developing secondary metastases. Methods: A total of 1,196 Japanese patients with early gastric cancers (648 mucosal cancers and 548 submucosal) were included in the selection of two groups: a metastatic group made up 57 cancers with lymph node metastasis (9 mucosal, 48 submucosal), and a nonmetastatic group of 61 cases (6 mucosal, 55 submucosal) without lymph node metastasis. Growth characteristics of the cancers (superficially spreading, penetrating or invasive, lymph node metastasis) were compared with immunohistochemical expression of single-stranded DNA (ssDNA) protein (apoptosis indicator), bcl-2 and p53 (apoptosis-associated), Ki-67 (cell proliferation), and E-cadherin (cell adhesion) proteins. Results: The lesions in the nonmetastatic group had higher levels of apoptosis and lower expression of bcl-2 than in the metastatic group, indicating an inhibitory role for apoptosis in malignant progression. Apoptosis was also higher in the superficial compared with the invasive lesions of both groups. The lesions in the metastatic group had higher p53 expression than that of the nonmetastatic group, whereas apoptosis in the metastatic group was lower than in the nonmetastatic group. An unproved explanation for this finding may be that, although increased, p53 was mutated and ineffective in promoting apoptotic control of metastatic progression. E-cadherin was decreased in the invasive lesions of both groups, indicating a greater ability of these cells to lose adhesion, to invade the submucosa, and to metastasize. Cell proliferation was highest in the superficial lesions of both metastatic and nonmetastatic groups. Conclusions: Early gastric cancers with low levels of apoptosis, increased bcl-2, and high levels of p53 expression are more likely to invade and metastasize. (C) 2003 Wiley-Liss, Inc.
Resumo:
The chondroitin sulfate proteoglycans neurocan and phosphacan are believed to modulate neurite outgrowth by binding to cell adhesion molecules, tenascin, and the differentiation factors heparin-binding growth-associated molecule and amphoterin. To assess the role of these chondroitin sulfate proteoglycans in the olfactory system, we describe here their expression patterns during both embryonic and postnatal development in the mouse. Immunoreactivity for neurocan was first detected in primary olfactory neurons at embryonic day 11.5 (E11.5). Neurocan was expressed by primary olfactory axons as they extended toward the rostral pole of the telencephalon as well as by their arbors in glomeruli after they contacted the olfactory bulb. The role of neurocan was examined by growing olfactory neurons on an extracellular matrix substrate containing neurocan or on extracellular matrix in the presence of soluble neurocan. In both cases, neurocan strongly promoted neurite outgrowth. These results suggest that neurocan supports the growth of primary olfactory axons through the extracellular matrix as they project to the olfactory bulb during development. Phosphacan, unlike neurocan, was present within the mesenchyme surrounding the E11.5 and E12.5 nasal cavity. This expression decreased at E13.5, concomitant with a transient appearance of phosphacan in nerve fascicles. Within the embryonic olfactory bulb, phosphacan was localised to the external and internal plexiform layers. However, during early postnatal development phosphacan was concentrated in the glomerular layer. These results suggest that phosphacan may play a role in delineating the pathway of growing olfactory axons as well as defining the laminar organization of the bulb. Together, the spatiotemporal expression patterns of neurocan and phosphacan indicate that these chondroitin sulfate proteoglycans have diverse in situ roles, which are dependent on context-specific interactions with extracellular and cell adhesion molecules within the developing olfactory nerve pathway. (C) 2000 Wiley-Liss, Inc.
Resumo:
The spatiotemporal expression patterns of the chemorepulsive EphA receptors, EphA4 and EphA7, and three ephrins-A2, A4 and A5, were examined in the developing rat primary olfactory system. Unlike the visual system that has simple and stable gradients of Ephs and ephrins, the olfactory system demonstrates complex spatiotemporal expression patterns of these molecules. Using immunohistochemistry, we demonstrate that expression of these molecules is dynamic and tightly regulated both within and between different cell types. We reveal restricted targeting of these proteins within subcellular compartments of some neurons. EphA4, ephrin-A2 and ephrin-A5 were expressed by primary olfactory axons during the embryonic formation of the olfactory nerve. There were no gradients in expression along the rostrocaudal or ventrodorsal axes in the nasal cavity and olfactory bulb. However, during the early neonatal period, axons expressing different levels of ephrin-A5 sorted out and terminated in a subpopulation of glomeruli that were mosaically dispersed throughout the bulb. The expression of EphA4 and ephrin-A2 was dramatically down-regulated on all axons during the early neonatal period of glomerular formation. The uniform co-expression of receptors and ligands before glomerular formation suggests they play a generic role in axon-axon interactions in the olfactory nerve and nerve fibre layer. In contrast, loss of EphA4 from axons during glomerular formation may facilitate the interaction of ephrin-A5 with Eph receptors on target cells in the bulb. While EphA4, EphA5 and EphA7 are not mosaically expressed by bulbar neurons, other Eph receptors may have expression patterns complementary to the ephrin-A5-positive subpopulation of glomeruli. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
VCAM-1 (vascular cell adhesion molecule-1) and Sox18 are involved in vascular development. VCAM-1 is an important adhesion molecule that is expressed on endothelial cells and has a critical role in endothelial activation, inflammation, lymphatic pathophysiology, and atherogenesis. The Sry-related high mobility group box factor Sox18 has previously been implicated in endothelial pathologies. Mutations in human and mouse Sox18 leads to hypotrichosis and lymphedema. Furthermore, both Sox18 and VCAM-1 have very similar spatio-temporal patterns of expression, which is suggestive of crosstalk. We use biochemical techniques, cell culture systems, and the ragged opossum (RaOP) mouse model with a naturally occurring mutation in Sox18 to demonstrate that VCAM-1 is an important target of Sox18. Transfection, site-specific mutagenesis, and gel shift analyses demonstrated that Sox18 directly targeted and trans-activated VCAM-1 expression. Importantly, the naturally occurring Sox18 mutant attenuates the expression and activation of VCAM-1 in vitro. Furthermore, in vivo quantitation of VCAM-1 mRNA levels in wild type and RaOP mice demonstrates that RaOP animals show a dramatic and significant reduction in VCAM-1 mRNA expression in lung, skin, and skeletal muscle. Our observation that the VCAM-1 gene is an important target of SOX18 provides the first molecular insights into the vascular abnormalities in the mouse mutant ragged and the human hypotrichosis-lymphedematelangiectasia disorder.
Resumo:
Alcohol dependence is characterized by tolerance, physical dependence, and craving. The neuroadaptations underlying these effects of chronic alcohol abuse are likely due to altered gene expression. Previous gene expression studies using human post-mortem brain demonstrated that several gene families were altered by alcohol abuse. However, most of these changes in gene expression were small. It is not clear if gene expression profiles have sufficient power to discriminate control from alcoholic individuals and how consistent gene expression changes are when a relatively large sample size is examined. In the present study, microarray analysis (similar to 47 000 elements) was performed on the superior frontal cortex of 27 individual human cases ( 14 well characterized alcoholics and 13 matched controls). A partial least squares statistical procedure was applied to identify genes with altered expression levels in alcoholics. We found that genes involved in myelination, ubiquitination, apoptosis, cell adhesion, neurogenesis, and neural disease showed altered expression levels. Importantly, genes involved in neurodegenerative diseases such as Alzheimer's disease were significantly altered suggesting a link between alcoholism and other neurodegenerative conditions. A total of 27 genes identified in this study were previously shown to be changed by alcohol abuse in previous studies of human post-mortem brain. These results revealed a consistent re-programming of gene expression in alcohol abusers that reliably discriminates alcoholic from non-alcoholic individuals.
Resumo:
The anatomy of the crocodilian heart and major arteries has fascinated people for a very long time. The first scientific paper seems to be that by the Italian anatomist Bartolomeo Panizza in 1833 who wrote about the structure of the heart and the circulation of the blood in /Crocodilys lucius/, an early name for the American Alligator. Since 1833 there have been many papers and the crocodilian heart has attracted the attention of generation after generation of anatomists and physiologists with ever-increasingly sophisticated investigatory techniques being applied to questions about the functional significance of the puzzlingly complex anatomy.
Resumo:
The purpose of this study was to determine the attentional demands of natural and imposed gait, as well as the attentional costs of transitions between the walking and running co-ordination patterns. Seven healthy young men and four healthy young women undertook an auditory probe reaction time task concurrently with self-selected gait (Experiment 1) and imposed walking and running (Experiment 2) at different speeds on a motor-driven treadmill. In Experiment 1, where participants were free to choose their own movement pattern to match the speed of travel of the treadmill, normal gait control was shown to have a significant attentional cost, and hence not be automatic in the classical sense. However, this attentional cost did not differ between the two gait modes or at the transition point. In Experiment 2, where participants were required to maintain specific gait modes regardless of the treadmill speed, the maintenance of walking at speeds normally associated with running was found to have an attentional cost whereas this was not the case for running at normal walking speeds. Collectively the findings support a model of gait control in which the normal switching between gait modes is determined with minimal attention demand and in which it is possible to sustain non-preferred gait modes although, in the case of walking, only at a significant attentional/cognitive cost. © 2002 Elsevier Science B.V. All rights reserved.
Resumo:
The differences in spectral shape resolution abilities among cochlear implant ~CI! listeners, and between CI and normal-hearing ~NH! listeners, when listening with the same number of channels ~12!, was investigated. In addition, the effect of the number of channels on spectral shape resolution was examined. The stimuli were rippled noise signals with various ripple frequency-spacings. An adaptive 4IFC procedure was used to determine the threshold for resolvable ripple spacing, which was the spacing at which an interchange in peak and valley positions could be discriminated. The results showed poorer spectral shape resolution in CI compared to NH listeners ~average thresholds of approximately 3000 and 400 Hz, respectively!, and wide variability among CI listeners ~range of approximately 800 to 8000 Hz!. There was a significant relationship between spectral shape resolution and vowel recognition. The spectral shape resolution thresholds of NH listeners increased as the number of channels increased from 1 to 16, while the CI listeners showed a performance plateau at 4–6 channels, which is consistent with previous results using speech recognition measures. These results indicate that this test may provide a measure of CI performance which is time efficient and non-linguistic, and therefore, if verified, may provide a useful contribution to the prediction of speech perception in adults and children who use CIs.
Resumo:
Comparisons across multiple taxa can often clarify the histories of biogeographic regions. In particular, historic barriers to movement should affect multiple species and, thus, result in a pattern of concordant intraspecific genetic divisions among species. A striking example of such comparative phylogeography is the recent observation that populations of many small mammals and reptiles living on the Baja, California peninsula have a large genetic break between northern and southern peninsular populations. In the present study, I demonstrate that five species of near-shore fishes living on the Baja coastline of the Gulf of California share this genetic pattern. The simplest explanation for this concordant genetic division within both terrestrial and marine vertebrates is that the Baja peninsula was fragmented by a Plio-Pleistocene marine seaway and that this seaway posed a substantial barrier to movement for near-shore fishes. The genetic divisions within Gulf of California fishes also coincide with recognized biogeographic regions based on fish community composition and several environmental factors. It is likely that adaptation to regional environments and present-day oceanographic circulation limits gene exchange between biogeographic regions and helps maintain evidence of past vicariance.
Resumo:
Comparisons among loci with differing modes of inheritance can reveal unexpected aspects of population history. We employ a multilocus approach to ask whether two types of independently assorting mitochondrial DNAs (maternally and paternally inherited: F- and M-mtDNA) and a nuclear locus (ITS) yield concordant estimates of gene flow and population divergence. The blue mussel, Mytilus edulis, is distributed on both North American and European coastlines and these populations are separated by the waters of the Atlantic Ocean. Gene flow across the Atlantic Ocean differs among loci, with F-mtDNA and ITS showing an imprint of some genetic interchange and M-mtDNA showing no evidence for gene flow. Gene flow of F-mtDNA and ITS causes trans-Atlantic population divergence times to be greatly underestimated for these loci, although a single trans-Atlantic population divergence time (1.2 MYA) can be accommodated by considering all three loci in combination in a coalescent framework. The apparent lack of gene flow for M-mtDNA is not readily explained by different dispersal capacities of male and female mussels. A genetic barrier to M-mtDNA exchange between North American and European mussel populations is likely to explain the observed pattern, perhaps associated with the double uniparental system of mitochondrial DNA inheritance.
Resumo:
Large-scale patterns of species diversity in the gastrointestinal helminth faunas of the coral reef fish Epinephelus merra (Serranidae) were investigated in French Polynesia and the South Pacific Ocean. The richer barrier reef community in French Polynesia supported richer parasite communities in E. merra than that on the fringing reef. While parasite communities among fish from the same archipelago were similar, differences in potential host species and the distance between archipelagos may have contributed to a qualitative difference in parasite communities between archipelagos. Digenean community diversity in coral reef fishes was greater in the western South Pacific, following similar patterns in free-living species. However, overall species diversity of camallanid nematodes of coral reef fishes does not appear to have been similarly affected.
Resumo:
This paper presents the recent finding by Muhlhaus et al [1] that bifurcation of crack growth patterns exists for arrays of two-dimensional cracks. This bifurcation is a result of the nonlinear effect due to crack interaction, which is, in the present analysis, approximated by the dipole asymptotic or pseudo-traction method. The nonlinear parameter for the problem is the crack length/ spacing ratio lambda = a/h. For parallel and edge crack arrays under far field tension, uniform crack growth patterns (all cracks having same size) yield to nonuniform crack growth patterns (i.e. bifurcation) if lambda is larger than a critical value lambda(cr) (note that such bifurcation is not found for collinear crack arrays). For parallel and edge crack arrays respectively, the value of lambda(cr) decreases monotonically from (2/9)(1/2) and (2/15.096)(1/2) for arrays of 2 cracks, to (2/3)(1/2)/pi and (2/5.032)(1/2)/pi for infinite arrays of cracks. The critical parameter lambda(cr) is calculated numerically for arrays of up to 100 cracks, whilst discrete Fourier transform is used to obtain the exact solution of lambda(cr) for infinite crack arrays. For geomaterials, bifurcation can also occurs when array of sliding cracks are under compression.
Resumo:
In this ambitious book, Burgoon, Stern, and Dillman present the most comprehensive coverage of the literature on interpersonal adaptation that I have seen in recent years. Their mission is to make a critical examination of this whole area from both theoretical and methodological perspectives, and then to present their own synthetic theory (interpersonal adaptation theory, IAT) and research agenda. Such a mission produces very high expectations in readers, and inevitably some readers will feel that the authors do not achieve all of it. Personally, I was impressed by how much they do achieve, and I was intrigued by the questions they did not answer. One can ask no more than this of any single book.
Resumo:
Extracellular polysaccharides from three Erythroclonium spp. were shown, by a combination of compositional, linkage analyses, and Fourier transform infrared and C-13-nuclear magnetic resonance spectroscopy, to be highly substituted carrageenans with at least five types of repeating disaccharide units. These are the carrabiose 2,4'-disulfate of iota-carrageenan, carrabiose 2-sulfate of alpha-carrageenan, the 6'-O-methylated counterparts of each of these repeating units, and 4',6'-O-(1-carboxyethylidene)carrabiose 2-sulfate. The polysaccharides also contain significant amounts of unsubstituted, 4-linked galactopyranose and small amounts of 4-linked 3-O-methylgalactopyranose and terminal glycosyl residues. The carrageenan preparations of the three species are similar, differing only in the proportions of some components. (C) 1998 Elsevier Science Ltd.