7 resultados para acidity and basicity
em University of Queensland eSpace - Australia
Resumo:
Unusually high concentrations of exchangeable-NH4+ (up to 270 kg-N/ha) were observed in a Vertisol below 1 m in southeast Queensland. This study aimed to identify the source of this NH4+. Preliminary sampling of native vegetation and cropping areas had found that elevated NH4+was only present under cropped soil, indicating that clearing was linked to the NH4+formation. Mechanisms of NH4+formation that may have occurred in the subsoil after clearing were hypothesised to be a) mineralisation of organic-N; b) NO3- reduction to NH4+; and/or c) the release of fixed-NH4+. In addition it was proposed that nitrification was inhibited in the subsoil, and that this allowed any NH4+formed to accumulate over time. Incubation experiments to examine nitrification rates revealed that nitrification was undetectable, and appeared to be limited by a combination of subsoil acidity and low numbers of nitrifying organisms. Mineralisation studies also revealed that the mineralisation of organic-N was undetectable, and that mineralising organisms were limited by acidity. A small amount of nitrate ammonification could be observed with the aid of a 15N tracer if the soil was waterlogged. However, this NH4+was insufficient to account for the overall NH4+accumulation, and these waterlogged conditions were not observed in the field. Concentrations of fixed- NH4+ measured were also too low to have been responsible for the accumulation of exchangeable-NH4+. It was concluded that none of the proposed hypotheses of NH4+formation could account for the NH4+accumulation observed.
Resumo:
Liquidus isotherms and phase equilibria have been determined experimentally for a pseudo-ternary section of the form MnO-(CaO+MgO)-(SiO2+Al2O3) with a fixed Al-2,O-3,/SiO2, weight ratio of 0.17 and MgO/CaO weight ratio of 0.17 for temperatures in the range 1473-1673 K. The primary phase fields present for the section investigated include manganosite (Mn,Mg,Ca)O; dicalcium silicate alpha-2(Ca,Mg,Mn)O (.) SiO2; merwinite 3CaO(.) ((Mg,Mn)O.2SiO(2); wollastonite [(Ca,Mg,Mn)(OSiO2)-Si-.]; ;tephroite [2(Mn,Mg)O.SiO2]; rhodonite [(Mn,Mg)O. diopside [(CaO,MgO,MnO,Al2O3)(SiO2)-Si-.]; tridymite (SiO2), SiO2] and melilite [2CaO (.) (MgO,MnO,Al2O3).2(SiO2,Al2O3)]. The liquidus temperatures relevant to ferro-manganese and silico-manganese smelting slags have been determined. The liquiclus temperature is shown to be principally dependent on the modified basicity weight ratio (CaO+Mgo)/(SiO2+Al2O3) at low MnO concentrations, and dependent on the mole ratio (CaO+ MgO+MnO)/(SiO2+Al2O3) at higher MnO concentrations.
Resumo:
Highly ordered rodlike periodic mesoporous organosilicas (PMO) were successfully synthesized using 1.2-bis(trimethoxysilyl)ethane as an precursor and triblock copolymer P123 as a template at low acid concentration and in the presence of inorganic salts (KCl). The role of acid and salt as well as the effects of synthesis temperature and reactant mole ratio in the control of morphology and the formation of ordered mesostructure was systematically examined. It was found that the addition of inorganic salt can dramatically expand the range of the synthesis parameters to produce highly ordered PMO structure and improve the quality of PMO materials. The morphology of PMOs was significantly dependent on the induction time for precipitation. The uniform PMO rods can only be synthesized in a narrow range of acid and salt concentrations. The results also show that the optimized salt concentration (I M) and low acidity (0.167 M) were beneficial to the formation of not only highly ordered mesostructure but also rodlike morphology. Increasing acidity resulted in fast hydrolysis reaction and short rod or plate-like particles. Highly ordered rod can also be prepared at low temperature (35 degrees C) with high salt amount (1.5 M) or high temperature (45 degrees C) with low salt amount (0.5 M). Optimum reactant molar composition at 40 degrees C is 0.035P123:8KCl:1.34HCI:444H(2)O:1.0bis(trimethoxysilyl)ethane. Lower or higher SiO2/PI23 ratio led to the formation of uniform meso-macropores or pore-blocking effect. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Phase equilibria have been determined experimentally for pseudo-ternary sections of the form “MnO”- (CaO+MgO)-(SiO2+Al2O3) with a fixed Al2O3/SiO2 weight ratio of 0.17 and MgO/CaO weight ratios of 0.25 and 0.17 respectively for temperatures in the range 1473-1673 K. The primary phase fields present for the MgO/CaO weight ratio of 0.17 include manganosite (Mn,Mg,Ca)O; dicalcium silicate α-2(Ca,Mg,Mn)O·SiO2; merwinite 3CaO⋅(Mg,Mn)O⋅2SiO2; wollastonite [(Ca,Mg,Mn)O·SiO2]; diopside [(CaO,MgO,MnO,Al2O3)·SiO2]; tridymite (SiO2); tephroite [2(Mn,Mg)O·SiO2]; rhodonite [(Mn,Mg)O·SiO2] and melilite [2CaO·(MgO,MnO,Al2O3)·2(SiO2,Al2O3)]. For the section with MgO/CaO weight ratio of 0.25 the anorthite phase (CaO⋅Al2O3⋅2SiO2) is also present. The liquidus temperatures of ferro- and silico-manganese smelting slags have been determined. The liquidus temperatures at low MnO concentrations are shown to be principally dependent on the modified basicity weight ratio (CaO+MgO)/(SiO2+Al2O3).