128 resultados para acid maltase deficiency

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Reactive oxygen species (ROS) contribute significantly to myocardial ischaemia-reperfusion (I-R) injury. Recently the combination of the antioxidants vitamin E (VE) and alpha-lipoic acid (alpha-LA) has been reported to improve cardiac performance and reduce myocardial lipid peroxidation during in vitro I-R. The purpose of these experiments was to investigate the effects of VE and alpha-LA supplementation on cardiac performance, incidence of dysrhythmias and biochemical alterations during an in vivo myocardial I-R insult. Female Sprague-Dawley rats (4-months old) were assigned to one of the two dietary treatments: (1) control diet (CON) or (2) VE and alpha-LA supplementation (ANTIOXID). The CON diet was prepared to meet AIN-93M standards, which contains 75 IU VE kg(-1) diet. The ANTIOXID diet contained 10 000 IU VE kg(-1) diet and 1.65 g alpha-LA kg(-1) diet. After the 14-week feeding period, significant differences (P < 0.05) existed in mean myocardial VE levels between dietary groups. Animals in each experimental group were subjected to an in vivo I-R protocol which included 25 min of left anterior coronary artery occlusion followed by 10 min of reperfusion. No group differences (P > 0.05) existed in cardiac performance (e.g. peak arterial pressure or ventricular work) or the incidence of ventricular dysrhythmias during the I-R protocol. Following I-R, two markers of lipid peroxidation were lower (P < 0.05) in the ANTIOXID animals compared with CON. These data indicate that dietary supplementation of the antioxidants, VE and alpha-LA do not influence cardiac performance or the incidence of dysrhythmias but do decrease lipid peroxidation during in viva I-R in young adult rats.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The magnesium (Mg) status of 52 highly weathered, predominantly acidic, surface soils from tropical and subtropical north-eastern Australia was evaluated in a laboratory study. Soils were selected to represent a range of soil types and management histories. Exchangeable Mg concentrations were generally low (median value 0.37 cmol(+)/kg), with deficient levels (<0.3 cmol(+)/kg) being measured in 22 of the soils, highlighting the potential for Mg deficiency as a limitation to plant growth in the region. Furthermore, acid-extractable Mg concentrations, considered a reserve of potentially available Mg, were generally modest (mean and median values, 1.6 and 0.40 cmol(+)/kg, respectively). The total Mg content of the soils studied ranged from 123 to 7894 mg/kg, the majority present in the mineral pool (mean 71%), with smaller proportions in the acid-soluble (mean 11%) and exchangeable (mean 17%) pools, and a negligible amount associated with organic matter (mean 1%). A range of extractant solutions used to displace exchangeable Mg was compared, and found to yield similar results on soils with exchangeable Mg <4 cmol(+)/kg. However, at higher exchangeable Mg concentrations, dilute extractants (0.01 M CaCl2, 0.0125 M BaCl2) displaced less Mg than concentrated extractants (1 M NH4Cl, 1 M NH4OAc, 1 M KCl). The concentrated extractants displaced similar amounts of Mg, thus the choice of extractant is not critical, provided the displacing cation is sufficiently concentrated. Exchangeable Mg was not significantly correlated to organic carbon (P > 0.05), and only 45% of the variation in exchangeable Mg could be explained by a combination of pH(w) and clay content.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Caustis blakei produces an intriguing morphological adaptation by inducing dauciform roots in response to phosphorus (P) deficiency. We tested the hypothesis that these hairy, swollen lateral roots play a similar role to cluster roots in the exudation of organic chelators and ectoenzymes known to aid the chemical mobilization of sparingly available soil nutrients, such as P. Dauciform-root development and exudate composition (carboxylates and acid phosphatase activity) were analysed in C. blakei plants grown in nutrient solution under P-starved conditions. The distribution of dauciform roots in the field was determined in relation to soil profile depth and matrix. The percentage of dauciform roots of the entire root mass was greatest at the lowest P concentration ([P]) in solution, and was suppressed with increasing solution [P], while in the field dauciform roots were predominately located in the upper soil horizons, and decreased with increasing soil depth. Citrate was the major carboxylate released in an exudative burst from mature dauciform roots, which also produced elevated levels of acid phosphatase activity. Malonate was the dominant internal carboxylate present, with the highest concentration in young dauciform roots. The high concentration of carboxylates and phosphatases released from dauciform roots, combined with their prolific distribution in the organic surface layer of nutrient-impoverished soils, provides an ecophysiological advantage for enhancing nutrient acquisition.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Iron deficiency is the most common nutritional deficiency in the world. Women of childbearing age are at particular risk of developing iron deficiency due to the iron losses associated with menstruation and childbirth. Women in less developed countries are often unable to obtain adequate dietary iron for their needs due to poor food supplies and inadequate bioavailable iron. In this situation, fortification and supplementation of the diet with extra iron is a reasonable approach to the prevention and treatment of iron deficiency. In Western countries however, food supply is unlikely to be an issue in the development of iron deficiency, yet studies have shown that many women in these countries receive inadequate dietary iron. Research has shown that the form of iron and the role of enhancers and inhibitors of iron absorption may be more important than total iron intake in determining iron status. Despite this, very little research attention has been paid to the role of diet in the prevention and treatment of iron deficiency. Dietary modification would appear to be a viable option for the prevention and treatment of iron deficiency in Western women, especially if the effects of enhancers/inhibitors of absorption are considered. While dietary modification has the potential to address at least part of the cause of iron deficiency in women of childbearing age, its efficacy is yet to be proven. (C) 1998 Elsevier Science Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Corticosteroid-binding globulin is a 383-amino acid glycoprotein that serves a hormone transport role and may have functions related to the stress response and inflammation. We describe a 39-member Italian-Australian family with a novel complete loss of function (null) mutation of the corticosteroid-binding globulin gene. A second, previously described, mutation (Lyon) segregated independently in the same kindred. The novel exon 2 mutation led to a premature termination codon corresponding to residue -12 of the procorticosteroid-binding globulin molecule (c.121G->A). Among 32 family members there were 3 null homozygotes, 19 null heterozygotes, 2 compound heterozygotes, 3 Lyon heterozygotes, and 5 individuals without corticosteroid-binding globulin mutations. Plasma immunoreactive corticosteroid-binding globulin was undetectable in null homozygotes, and mean corticosteroid-binding globulin levels were reduced by approximately 50% at 18.7 ± 1.3 µg/ml (reference range, 30–52 µg/ml) in null heterozygotes. Morning total plasma cortisol levels were less than 1.8 µg/dl in homozygotes and were positively correlated to the plasma corticosteroid-binding globulin level in heterozygotes. Homozygotes and heterozygote null mutation subjects had a high prevalence of hypotension and fatigue. Among 19 adults with the null mutation, the systolic blood pressure z-score was 12.1 ± 3.5; 11 of 19 subjects (54%) had a systolic blood pressure below the third percentile. The mean diastolic blood pressure z-score was 18.1 ± 3.4; 8 of 19 subjects (42%) had a diastolic blood pressure z-score below 10. Idiopathic chronic fatigue was present in 12 of 14 adult null heterozygote subjects (86%) and in 2 of 3 null homozygotes. Five cases met the Centers for Disease Control criteria for chronic fatigue syndrome. Fatigue questionnaires revealed scores of 25.1 ± 2.5 in 18 adults with the mutation vs. 4.2 ± 1.5 in 23 healthy controls (P < 0.0001). Compound heterozygosity for both mutations resulted in plasma cortisol levels comparable to those in null homozygotes. Abnormal corticosteroid-binding globulin concentrations or binding affinity may lead to the misdiagnosis of isolated ACTH deficiency. The mechanism of the association between fatigue and relative hypotension is not established by these studies. As idiopathic fatigue disorders are associated with relatively low plasma cortisol, abnormalities of corticosteroid-binding globulin may be pathogenic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 48-year-old male patient with underlying CPT II enzyme deficiency is described. Emotional stress appeared to precipitate recurrent myalgias, rhabdomyolysis and reversible renal impairment over a 40-year period. Our search of the English literature indicates this to be the first time that the emotional stress has been documented to precipitate the CPT II syndrome. Although the pathogenesis of this syndrome has yet to be established, existing knowledge is briefly reviewed and the likely metabolic and neuroendocrine mechanisms which link emotional stress to muscle metabolism are examined. These mechanisms influence the extent of lipolysis or glycolysis that occurs during the process of muscle ATP generation. It is suggested that neuroendocrine and other stress related changes which favour lipolysis over glycolysis adversely effect muscle energy metabolism in patients whose mitochondria are deficient in CPT II enzyme. Possible treatment strategies are those that favour glycolysis over fatty acid metabolism and include a variety of ways of modulating sympathetic and parasympathetic tone. The use of carbohydrate supplementation P-blockers and anxiolytic agents is discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plant hormones abscisic acid (ABA), jasmonic acid (JA), and ethylene are involved in diverse plant processes, including the regulation of gene expression during adaptive responses to abiotic and biotic stresses. Previously, ABA has been implicated in enhancing disease susceptibility in various plant species, but currently very little is known about the molecular mechanisms underlying this phenomenon. In this study, we obtained evidence that a complex interplay between ABA and JA-ethylene signaling pathways regulate plant defense gene expression and disease resistance. First, we showed that exogenous ABA suppressed both basal and JA-ethylene-activated transcription from defense genes. By contrast, ABA deficiency as conditioned by the mutations in the ABA1 and ABA2 genes, which encode enzymes involved in ABA biosynthesis, resulted in upregulation of basal and induced transcription from JA-ethylene responsive defense genes. Second, we found that disruption of AtMYC2 (allelic to JASMONATE INSENSITIVE1 [JIN1]), encoding a basic helix-loop-helix Leu zipper transcription factor, which is a positive regulator of ABA signaling, results in elevated levels of basal and activated transcription from JA-ethylene responsive defense genes. Furthermore, the jin1/myc2 and aba2-1 mutants showed increased resistance to the necrotrophic fungal pathogen Fusarium oxysporum. Finally, using ethylene and ABA signaling mutants, we showed that interaction between ABA and ethylene signaling is mutually antagonistic in vegetative tissues. Collectively, our results indicate that the antagonistic interactions between multiple components of ABA and the JA-ethylene signaling pathways modulate defense and stress responsive gene expression in response to biotic and abiotic stresses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deficiency of the enzyme hypoxanthine-guanine phosphoribosyltransferase (HPRT; EC 2.4.2.8) is associated with a spectrum of disease that ranges from gouty arthritis (OMIM 300323) to the more severe Lesch-Nyhan syndrome (OMIM 300322). To date, all cases of HPRT deficiency have shown a mutation within the HPRT cDNA. In the present study of an individual with gout due to HPRT deficiency, we found a normal HPRT cDNA sequence. This is the first study to provide an example of HPRT deficiency which appears to be due to a defect in the regulation of the gene. © 2005 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Purpose - A higher plasma concentration of total homocysteine (tHcy) is associated with a greater risk of cardiovascular events. Previous studies, largely in younger individuals, have shown that B vitamins lowered tHcy by substantial amounts and that this effect is greater in people with higher tHcy and lower folate levels. Methods - We undertook a 2-year, double-blind, placebo-controlled, randomized trial in 299 men aged >= 75 years, comparing treatment with a daily tablet containing 2 mg of folate, 25 mg of B-6, and 400 mu g of B-12 or placebo. The study groups were balanced regarding age (mean +/- SD, 78.9 +/- 2.8 years), B vitamins, and tHcy at baseline. Results - Among the 13% with B12 deficiency, the difference in mean changes in treatment and control groups for tHcy was 6.74 mu mol/L (95% CI, 3.94 to 9.55 mu mol/L) compared with 2.88 mu mol/L (95% CI, 0.07 to 5.69 mu mol/L) for all others. Among the 20% with hyperhomocysteinaemia, the difference between mean changes in treatment and control groups for men with high plasma tHcy compared with the rest of the group was 2.8 mu mol/L (95% CI, 0.6 to 4.9 mu mol/L). Baseline vitamin B12, serum folate, and tHcy were significantly associated with changes in plasma tHcy at follow-up (r = 0.252, r = 0.522, and r = -0.903, respectively; P = 0.003, <0.001, and <0.001, respectively) in the vitamin group. Conclusions - The tHcy-lowering effect of B vitamins was maximal in those who had low B12 or high tHcy levels. Community-dwelling older men, who are likely to be deficient in B12 or have hyperhomocysteinemia, may be most likely to benefit from treatment with B vitamins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lysosomal acid lipase (LAL) hydrolyzes cholesteryl esters and triglycerides to generate free fatty acids and cholesterol in the cell. The downstream metabolites of these compounds serve as hormonal ligands for nuclear receptors and transcription factors. Genetic ablation of the lal gene in the mouse caused malformation of macrophages and inflammation-triggered multiple pathogenic phenotypes in multiple organs. To assess the relationship between macro phages and lal(-/-) pathogenic phenotypes, a macrophage-specific doxycycline-inducible transgenic system was generated to induce human LAL (hLAL) expression in the lal(-/-) genetic background under control of the 7.2-kb c-fins promoter/intron2 regulatory sequence. Doxycycline-induced hLAL expression in macrophages significantly ameliorated aberrant gene expression, inflammatory cell (neutrophil) influx, and pathogenesis in multiple organs. These studies strongly support that neutral lipid metabolism in macrophages contributes to organ inflammation and pathogenesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inosine triphosphate pyrophosphohydrolase (ITPase) deficiency is a common inherited condition characterized by the abnormal accumulation of inosine triphosphate (ITP) in erythrocytes. The genetic basis and pathological consequences of ITPase deficiency are unknown. We have characterized the genomic structure of the ITPA gene, showing that it has eight exons. Five single nucleotide polymorphisms were identified, three silent (138GMA, 561GMA, 708GMA) and two associated with ITPase deficiency (94CMA, IVS2+21AMC). Homozygotes for the 94CMA missense mutation (Pro32 to Thr) had zero erythrocyte ITPase activity, whereas 94CMA heterozygotes averaged 22.5% of the control mean, a level of activity consistent with impaired subunit association of a dimeric enzyme. ITPase activity of IVS2+21AMC homozygotes averaged 60% of the control mean. In order to explore further the relationship between mutations and enzyme activity, we examined the association between genotype and ITPase activity in 100 healthy controls. Ten subjects were heterozygous for 94CMA (allele frequency: 0.06), 24 were heterozygotes for IVS2+21AMC (allele frequency: 0.13) and two were compound heterozygous for these mutations. The activities of IVS2+21AMC heterozygotes and 94CMA/IVS2+21AMC compound heterozygotes were 60% and 10%, respectively, of the normal control mean, suggesting that the intron mutation affects enzyme activity. In all cases when ITPase activity was below the normal range, one or both mutations were found. The ITPA genotype did not correspond to any identifiable red cell phenotype. A possible relationship between ITPase deficiency and increased drug toxicity of purine analogue drugs is proposed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lactic acid (LA) has significant market potential for many industries including food, cosmetics, pharmaceuticals, medical and biodegradable materials. Production of LA usually begins with the fermentation of glucose but subsequent stages for the enrichment of lactic acid are complex and energy intensive and could be minimised using water selective membrane technology. In this work, we trialled a highly selective hydrostable carbonised template molecular sieve silica (CTMSS) membrane for the dehydration of a 15 vol% aqueous lactic acid solution with 0.1 vol% glucose. CTMSS membrane films were developed by dip-coating ceramic substrates with silica sols made using the acid catalysed sol-gel process. Permeation was performed by feeding LA/glucose solution to the membrane cell at 18°C in a standard pervaporation setup. The membrane showed selective transport of water from the aqueous feed to the permeate while glucose was not detected. CTMSS membrane permeate flux stabilised at 0.2 kg.m-2.hr-1 in 3.9 hours, and reduced LA to lower than 0.2 vol%. Flux through the CTMSS micropores was activated, displaying increased initial flux to 1.58 kg.m-2.hr-1 at 60°C. To enrich a 1 l.min-1 stream to 85% LA in a single stage, a minimum membrane area of 324 m2 would be required at 18°C. Increased operating temperature to 80°C significantly reduced this area to 24 m2 but LA levels in the permeate stream increased to 0.5 vol%. The highly selective CTMSS membrane technology is an ideal candidate for LA purification. CTMSS membrane systems operate stably in aqueous systems leading to potential cost reductions in LA processing for future markets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Atherosclerotic plaque contains apoptotic endothelial cells with oxidative stress implicated in this process. Vitamin E and a-lipoic acid are a potent antioxidant combination with the potential to prevent endothelial apoptosis. Regular exercise is known to increase myocardial protection, however, little research has investigated the effects of exercise on the endothelium. The purpose of these studies was to investigate the effects of antioxidant supplementation and/or exercise training on proteins that regulate apoptosis in endothelial cells. Male rats received a control or antioxidant-supplemented diet (vitamin E and alpha-lipoic acid) and were assigned to sedentary or exercise-trained groups for 14 weeks. Left ventricular endothelial cells (LVECs) were isolated and levels of the anti-apoptotic protein Bcl-2 and the pro-apoptotic protein Bax were measured. Antioxidant supplementation caused a fourfold increase in Bcl-2 (P < 0.05) with no change in Bax (P > 0.05). Bcl-2:Bax was increased sixfold with antioxidant supplementation compared to non-supplemented animals (P < 0.05). Exercise training had no significant effect on Bcl-2, Bax or Bcl-2:Bax either alone or combined with antioxidant supplementation (P > 0.05) compared to non-supplemented animals. However, Bax was significantly lower (P < 0.05) in the supplemented trained group compared to non-supplemented trained animals. Cultured bovine endothelial cells incubated for 24 h with vitamin E and/or a-lipoic acid showed the combination of the two antioxidants increased Bcl-2 to a greater extent than cells incubated with the vehicle alone. In summary, vitamin E and a-lipoic acid increase endothelial cell Bcl-2, which may provide increased protection against apoptosis. (c) 2005 Elsevier Ltd. All rights reserved