2 resultados para abelian varieties, integrable systems
em University of Queensland eSpace - Australia
Resumo:
We introduce a general Hamiltonian describing coherent superpositions of Cooper pairs and condensed molecular bosons. For particular choices of the coupling parameters, the model is integrable. One integrable manifold, as well as the Bethe ansatz solution, was found by Dukelsky et al. [J. Dukelsky, G.G. Dussel, C. Esebbag, S. Pittel, Phys. Rev. Lett. 93 (2004) 050403]. Here we show that there is a second integrable manifold, established using the boundary quantum inverse scattering method. In this manner we obtain the exact solution by means of the algebraic Bethe ansatz. In the case where the Cooper pair energies are degenerate we examine the relationship between the spectrum of these integrable Hamiltonians and the quasi-exactly solvable spectrum of particular Schrodinger operators. For the solution we derive here the potential of the Schrodinger operator is given in terms of hyperbolic functions. For the solution derived by Dukelsky et al., loc. cit. the potential is sextic and the wavefunctions obey PT-symmetric boundary conditions. This latter case provides a novel example of an integrable Hermitian Hamiltonian acting on a Fock space whose states map into a Hilbert space of PE-symmetric wavefunctions defined on a contour in the complex plane. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A class of algebras forms a variety if it is characterised by a collection of identities. There is a well-known method, often called the standard construction, which gives rise to algebras from m-cycle systems. It is known that the algebras arising from {1}-perfect m-cycle systems form a variety for m is an element of {3, 5} only, and that the algebras arising from {1, 2}-perfect m-cycle systems form a variety for m is an element of {3, 5, 7} only. Here we give, for any set K of positive integers, necessary and sufficient conditions under which the algebras arising from K-perfect m-cycle systems form a variety. (c) 2006 Elsevier B.V. All rights reserved.