5 resultados para aanadyl arsenate
em University of Queensland eSpace - Australia
Resumo:
Arsenic has been classified as a human carcinogen based on epidemiological data however the mechanism of its carcinogenicity is still unclear. Urinary biomarkers for chronic arsenic exposure would be valuable as an early warning indicator for timely interventions. In this study, young female C57BI/6J mice were given drinking water containing 0, 100, 250 and 500 mug As-v/L as sodium arsenate ad libitum for 12 months. Urine was collected bimonthly for urinary arsenic methylation assay and porphyrin analysis. All detectable arsenic species showed strong linear correlation with administered dosage and the arsenic methylation patterns were similar in all three treatment groups. No significant changes of methylation patterns were observed over time for either the control or test groups. Urinary coproporphyrin III was significantly increased in the 8th month in 250 and 500 mug/L groups and remained significantly dose-related after 10 and 12 months. Coproporphyrin I also showed a significant dose-response relationship after 12 months. Our results confirm that urinary arsenic is a useful biomarker for internal dose. The alteration of porphyrin profile suggests that arsenic can affect the heme metabolism and this may occur prior to the onset of arsenic induced carcinogenesis. (C) 2004 Elsevier Ireland Ltd. All rights reserved.
Resumo:
A pulse of chromated copper arsenate (CCA, a timber preservative) was applied in irrigation water to an undisturbed field soil in a laboratory column. Concentrations of various elements in the leachate from the column were measured during the experiment. Also, the remnants within the soil were measured at the end of the experiment. The geochemical modelling package, PHREEQC-2, was used to simulate the experimental data. Processes included in the CCA transport modelling were advection, dispersion, non-specific adsorption (cation exchange) and specific adsorption by clay minerals and organic matter, as well as other possible chemical reactions such as precipitation/dissolution. The modelling effort highlighted the possible complexities in CCA transport and reaction experiments. For example, the uneven dosing of CCA as well as incomplete knowledge of the soil properties resulted in simulations that gave only partial, although reasonable, agreement with the experimental data. Both the experimental data and simulations show that As and Cu are strongly adsorbed and therefore, will mostly remain at the top of the soil profile, with a small proportion appearing in leachate. On the other hand, Cr is more mobile and thus it is present in the soil column leachate. Further simulations show that both the quantity of CCA added to the soil and the pH of the irrigation water will influence CCA transport. Simulations suggest that application of larger doses of CCA to the soil will result in higher leachate concentrations, especially for Cu and As. Irrigation water with a lower pH will dramatically increase leaching of Cu. These results indicate that acidic rainfall or significant accidental spillage of CCA will increase the risk of groundwater pollution.
Resumo:
Cyclic voltammetry of the non-heme diiron enzyme porcine purple acid phosphatase (uteroferrin, Uf) has been reported for the first time. Totally reversible one-electron oxidation responses (Fe-III-Fe-II --> Fe-III-Fe-III) are seen both in the absence and in the presence of weak competitive inhibitors phosphate and arsenate, and dissociation constants of these oxoanion complexes formed with uteroferrin in its oxidized state (Uf(o)) have been determined. The effect of pH on the redox potentials has been investigated in the range 3 < pH < 6.5, enabling acid dissociation constants for Uf(o) and its phosphate and arsenate complexes to be calculated.
Resumo:
The chemolithoautotrophic bacterium NT-26 (isolated from a gold mine in the Northern Territory of Australia) is unusual in that it acquires energy by oxidizing arsenite to arsenate while most other arsenic-oxidizing organisms perform this reaction as part of a detoxification mechanism against the potentially harmful arsenite [present as As(OH)(3) at neutral pH]. The enzyme that performs this reaction in NT-26 is the molybdoenzyme arsenite oxidase, and it has been previously isolated and characterized. Here we report the direct (unmediated) electrochemistry of NT-26 arsenite oxidase confined to the surface of a pyrolytic graphite working electrode. We have been able to demonstrate that the enzyme functions natively while adsorbed on the electrode where it displays stable and reproducible catalytic electrochemistry in the presence of arsenite. We report a pH dependence of the catalytic electrochemical potential of -33 mV/pH unit that is indicative of proton-coupled electron transfer. We also have performed catalytic voltammetry at a number of temperatures between 5 and 25 degrees C, and the catalytic current (proportional to the turnover number) follows simple Arrhenius behavior.