3 resultados para Zonation

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

We investigated the behavioural responses of two gobiid fish species to temperature to determine if differences in behaviour and ventilation rate might explain any apparent vertical zonation. A survey of the shore at Manly, Moreton Bay revealed Favonigobius exquisitus to dominate the lower shore and Pseudogobius sp. 4 the upper shore. These species were exposed to a range of temperatures (15-40 degreesC) in aquaria for up to 6 h. At 20 degreesC F. exquisitus exhibited a mean gill ventilation rate of 26 +/- 1.4 bpm (beats per minute) differing significantly from Pseudogobius, which ventilated at a fivefold greater rate of 143 +/- 6 bpm. The ventilation rate in F. exquisitus underwent a fivefold increase from normal local water temperature (20 degreesC) to high temperature (35 degreesC) conditions, whereas that of Pseudogobius did not even double, suggesting that Pseudogobius sp. is a better thermal regulator than F. exquisitus. While both species emerged from the water at high temperatures (>30 degreesC) the behaviours they exhibited while immersed at high temperature were quite different. F. exquisitus undertook vertical displacement movements we interpret as an avoidance response, whereas Pseudogobius sp. appeared to use a coping strategy involving movements that might renew the water mass adjacent to its body. The thermal tolerances and behaviours of F. exquisitus and Pseudogobius sp. are in broad agreement with their vertical distribution on the shore.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the granitic Seychelles, many shores and beaches are fringed by coral reef flats which provide protection to shores from erosion by waves. The surfaces of these reef flats support a complex ecology. About 10 years ago their seaward zones were extensively covered by a rich coral growth, which reached approximately to mean low water level, but in 1998 this was largely killed by seawater warming. The resulting large expanses of dead coral skeletons in these locations are now disintegrating, and much of the subsequent modest recovery by new coral recruitment was set back by further mortalities. A mathematical model of wave energy reaching shorelines protected by coral reef flats has been applied to 14 Seychelles reefs. It is derived from equations which predict: (1) the raised water level, or wave set-up, on reef flats resulting from wave breaking, which depends upon offshore wave height and period, depth of still water over the reef flat and the reef crest profile, and (2) the decay of energy from reef edge to shoreline that is affected by width of reef flat, surface roughness, sea level rise and 'pseudo-sea level rise' created by increased depth resulting from disintegration of coral colonies. The model treats each reef as one entity, but because biota and zonation on reef flats are not homogenous, all reefs are divided into four zones. In each, cover by both living and dead biota was estimated for calculation of parameters, and then averaged to obtain input data for the model. All possible biological factors were taken into account, such as the ability of seagrass beds to grow upwards to match expected sea level rise, reduction in height of the reef flat in relation to sea level as zones of dead corals decay, and the observed 'rounding' of reef crests as erosion removes corals from those areas. Estimates were also made of all these factors for a time approximately a decade ago, representing a time before the mass coral mortality, and for approximately a decade in the future when the observed rapid state of dead coral colony disintegration is assumed to have reached an end point. Results of increased energy over the past decade explain observations of erosion in some sites in the Seychelles. Most importantly, it is estimated that the rise in energy reaching shores protected by fringing reefs will now accelerate more rapidly, such that the increase expected over the next decade will be approximately double than that seen over the past decade. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This second and concluding part of a comprehensive palynological study of the Lower to Middle Ordovician succession of the central-northeastern Canning Basin completes the systematic documentation of the palynomorphs, i.e., chitinozoans, and formulates a palynostratigraphic zonation scheme embracing all three constituent formations of this investigation, viz., the Willara, Goldwyer, and Nita formations. A total of 21 species of chitinozoans (five genera), detailed systematically herein, are identified. Although chitinozoan recovery per sample proved variable, the following species occur fairly persistently in the productive samples: Belonechitina micracantha, Conochitina subcylindrica, C. poumoti, C. langei, Calpichitina windjana, and Rhabdochitina magna. Five, stratigraphically successive acritarch/prasinophyte assemblage zones, ranging in age from early Arenig through late Llanvirn, are proposed as follows (ascending order): Athabascaella rossii Assemblage Zone (corresponding to the lower Willara Formation; and dated as early-mid Arenig); Comasphaeridium setaricum Assemblage Zone (upper Willara and lowermost Goldwyer; late Arenig-earliest Llanvirn); Sacculidium aduncum Assemblage Zone (lower Goldwyer; early Llanvirn); Aremorica-nium solaris Assemblage Zone (middle and lower upper Goldwyer; mid Llanvirn); and Dactylofusa striatogranulata Assemblage Zone (upper Goldwyer and lower Nita; late Llanvirn). Four chitinozoan assemblage zones, stratigraphically coinciding (within the limits of sampling) with the acritarch/prasinophyte zones, comprise (in ascending order): Lagenochitina combazi Assemblage Zone (equivalent to the A. rossii and L. heterorhabda Assemblage Zones); Conochitina langei Assemblage Zone; Conocbitina subcylindrica Assemblage Zone; and Belonecbitina micracantha Assemblage Zone. Chronostratigraphic assignments are based principally on associated conodont and graptolite faunas. Whereas the acritarch/prasinophyte zones bear scant similarities to those established globally elsewhere, the chitinozoan zones show significant affiliations with those known from Laurentia.