13 resultados para Zirconia needles precursor

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel method to prepare mesoporous zirconia was developed. The synthesis was carried out in the presence of PEO surfactants via solid-state reaction. The materials exhibit strong diffraction peak at low 2-theta angle and their nitrogen adsorption/desorption isotherms are typical of IV type with H3 hysteresis loops. The pore structure examined by TEM can be described as wormhole domains. The tetragonal zirconia nanocrystals are uniform in size (around 1.5nm) and their pores center at around 4.6nm. The zirconia nanocrystal growth is mainly via an aggregation mechanism. This study also reveals that the PEO surfactants can interact with the Zr-O-Zr framework to reinforce the thermal stability of zirconia. The ratio of NaOH to ZrOCl2, crystallization and calcination temperature play an important role in the synthesis of mesoporous zirconia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The most potent known naturally occurring Bowman-Birk inhibitor, sunflower trypsin inhibitor-1 (SFTI-1), is a bicyclic 14-amino acid peptide from sunflower seeds comprising one disulfide bond and a cyclic backbone. At present, little is known about the cyclization mechanism of SFTI-1. We show here that an acyclic permutant of SFTI-1 open at its scissile bond, SFTI-1[ 6,5], also functions as an inhibitor of trypsin and that it can be enzymatically backbone-cyclized by incubation with bovine beta-trypsin. The resulting ratio of cyclic SFTI-1 to SFTI1[6,5] is similar to9:1 regardless of whether trypsin is incubated with SFTI-1[ 6,5] or SFTI-1. Enzymatic resynthesis of the scissile bond to form cyclic SFTI-1 is a novel mechanism of cyclization of SFTI-1[ 6,5]. Such a reaction could potentially occur on a trypsin affinity column as used in the original isolation procedure of SFTI-1. We therefore extracted SFTI-1 from sunflower seeds without a trypsin purification step and confirmed that the backbone of SFTI-1 is indeed naturally cyclic. Structural studies on SFTI-1[ 6,5] revealed high heterogeneity, and multiple species of SFTI-1[ 6,5] were identified. The main species closely resembles the structure of cyclic SFTI-1 with the broken binding loop able to rotate between a cis/trans geometry of the I7-P8 bond with the cis conformer being similar to the canonical binding loop conformation. The non-reactive loop adopts a beta-hairpin structure as in cyclic wild-type SFTI-1. Another species exhibits an isoaspartate residue at position 14 and provides implications for possible in vivo cyclization mechanisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthetic origins of the isocyanide and isothiocyanate functional groups in the marine sponge metabolites diisocyanoadociane (1), 9-isocyanopupukeanane (10) and 9- isothiocyanatopupukeanane (11) are probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Amphimedon terpenensis with [C-14]-labelled thiocyanate resulted in radioactive diisocyanoadociane ( 1) in which the radiolabel is specifically associated with the isocyanide carbons. As expected, cyanide and thiocyanate were confirmed as precursors to the pupukeananes 10 and 11 in the sponge Axinyssa n. sp.; additionally these precursors labelled 2-thiocyanatoneopupukeanane ( 12) in this sponge. To probe whether isocyanide-isothiocyanate interconversions take place at the secondary metabolite level, the advanced precursor bisisothiocyanate 17 was supplied to A. terpenensis, but did not result in significant labelling in the natural product isocyanide 1. In contrast, in the sponge Axinyssa n. sp., feeding of [C-14]-9-isocyanopupukeanane (10) resulted in isolation of radiolabelled 9- isothiocyanatopupukeanane 11, while the feeding of [C-14]-11 resulted in labelled isocyanide 10. These results show conclusively that isocyanides and isothiocyanates are interconverted in the sponge Axinyssa n. sp., and confirm the central role that thiocyanate occupies in the terpene metabolism of this sponge.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biosynthetic origin of the dichloroimine functional group in the marine sponge terpene metabolites stylotellanes A ( 3) and B ( 4) was probed by the use of [C-14]-labelled precursor experiments. Incubation of the sponge Stylotella aurantium with [C-14]-labelled cyanide or thiocyanate resulted in radioactive terpenes in which the radiolabel was shown by hydrolytic chemical degradation to be associated specifically with the dichloroimine carbons. Additionally, label from both precursors was incorporated into farnesyl isothiocyanate ( 2). A time course experiment with [ 14C]cyanide revealed that the specific activity for farnesyl isothiocyanate decreases over time, but increases for stylotellane B ( 4), consistent with the rapid formation of farnesyl isothiocyanate ( 2) from inorganic precursors followed by a slower conversion to stylotellane B ( 4). The advanced precursors farnesyl isothiocyanate ( 2) and farnesyl isocyanide ( 5) were supplied to S. aurantium, and shown to be incorporated efficiently into stylotellane A ( 3) and B ( 4). Feeding of [C-14]-farnesyl isothiocyanate ( 2) resulted in a higher incorporation of label than with [C-14]-farnesyl isocyanide ( 5). Farnesyl isocyanide was incorporated into farnesyl isothiocyanate in agreement with labelling studies in other marine sponges. Both farnesyl isocyanide and isothiocyanate were further incorporated into axinyssamide A ( 11) as well as the cyclized dichloroimines (12)-(14), ( 16) that represent more advanced biosynthetic products of this pathway. These results identify the likely biosynthetic pathway leading to the major metabolites of S. aurantium.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mesoporous nanoscale zircoina zeolite was firstly synthesized via solid state - Structure directing method without addition of any stabilizer. The sample bears lamellar or worm pore structures, relatively high surface area compared with that reported. The mesoporous nanosize structure can also resist higher calcination temperature. The introduction of above zirconia to the catalyst of methanol synthesis dedicates the nanosize particle size to the catalyst, which significantly changes the physical structure and electronic effect of the catalyst. The catalyst shows higher catalytic activity and selectivity to methanol. The active sites for methanol synthesis are demonstrated over various catalysts in this paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the presence of nonionic block-copolymer surfactant, nanocrystalline zirconia particles with MSU mesostrucmre were synthesized by a novel solid-state reaction route. The zirconia particles possess a nanocrystalline pore wall, which renders higher thermal stability compared to an amorphous framework. To further enhance its stability, laponite, a synthetic clay, was introduced. Laponite acts as an inhibitor to crystal a growth and also as a hard template for the mesostructure. High surface area and ordered pore structure were observed in the stabilized zirconia. The results show that the formation of the MSU structure is attributed to reverse hexagonal micelles, which are the products of the cooperative self-assembly of organic and inorganic species in the solid-state synthesis system with crystalline water and hygroscopic water present.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Backbone-cyclized proteins are becoming increasingly well known, although the mechanism by which they are processed from linear precursors is poorly understood. In this report the sequence and structure of the linear precursor of a cyclic trypsin inhibitor, sunflower trypsin inhibitor 1 (SFTI-1) from sunflower seeds, is described. The structure indicates that the major elements of the reactive site loop of SFTI-1 are present before processing. This may have importance for a protease-mediated cyclizing reaction as the rigidity of SFTI-1 may drive the equilibrium of the reaction catalyzed by proteolytic enzymes toward the formation of a peptide bond rather than the normal cleavage reaction. The occurrence of residues in the SFTI-1 precursor susceptible to cleavage by asparaginyl proteases strengthens theories that involve this enzyme in the processing of SFTI-1 and further implicates it in the processing of another family of plant cyclic proteins, the cyclotides. The precursor reported here also indicates that despite strong active site sequence homology, SFTI-1 has no other similarities with the Bowman-Birk trypsin inhibitors, presenting interesting evolutionary questions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyclotides are a family of plant proteins that have the unusual combination of head-to-tail backbone cyclization and a cystine knot motif. They are exceptionally stable and show resistance to most chemical, physical, and enzymatic treatments. The structure of tricyclon A, a previously unreported cyclotide, is described here. In this structure, a loop that is disordered in other cyclotides forms a beta sheet that protrudes from the globular core. This study indicates that the cyclotide fold is amenable to the introduction of a range of structural elements without affecting the cystine knot core of the protein, which is essential for the stability of the cyclotides. Tricyclon A does not possess a hydrophobic patch, typical of other cyclotides, and has minimal hemolytic activity, making it suitable for pharmaceutical applications. The 22 kDa precursor protein of tricyclon A was identified and provides clues to the processing of these fascinating miniproteins.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nanocrystalline zirconia was synthesized and used as catalyst support for methanol synthesis. The nanocrystallite particles have new physical and textural properties which are critical in determining the catalytic performance. Nanocrystalline zirconia changes the electronic structure and affects the metal and support interactions on the catalyst. leading to facile reduction. intimate interaction between copper and zirconia, more corner defects and oxygen vacancies on the surface of the catalyst. All these changes are beneficial to the reaction of methanol synthesis from hydrogenation of CO2. As a result. higher conversion of CO2 and selectivity of methanol are achieved compared to the catalysts prepared by conventional co-precipitation method. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Without introduction of any stabilizer, the mesoporous nanocrystalline zirconia with lamellar and MSU structure was obtained via solid state reaction coupled with surfactant templating method. The phase, surface area and pore structure of zirconia prepared with this novel method could be designed, tailored and controlled by varying synthesis parameters. The phase transformation was controlled by particle size. The mesostructure possesses nanocrystalline pore wall, which renders it more thermally stable than amorphous framework. The results suggest strongly that in solid state synthesis system mesostructure formation still follow the supramolecular self-assembly mechanism. The lamellar and reverse hexagonal structure could be transformed at different OH-/Zr molar ratios in order to sustain the low surface energy of the mesophases. The lamellar structure was preferred at higher OH-/Zr molar ratios but reverse hexagonal was at low ratios.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The introduction of mesoporous nanosize zirconia to the catalyst for methanol synthesis dedicates the nanosized catalyst and mesoporous duplicated properties. The catalyst bears the larger surface area, larger mesoporous volume and more uniform diameter, more surface metal atoms and oxygen vacancies than the catalyst prepared with the conventional coprecipitation method. The modification of microstructure and electronic effect could result in the change of the reduced chemical state and decrease of reducuction temperature of copper, donating the higher activity and methanol selectivity to the catalyst. The results of methanol synthesis demonstrate that the Cu+ is the optimum active site. Also, the interaction between the copper and zirconia shows the synergistic effect to fulfil the methanol synthesis.