27 resultados para Zinc hexacyanoferrate
em University of Queensland eSpace - Australia
Metal and solute transportation through a wetland at a Lead Zinc Mine, Northern Territory, Australia
Resumo:
Zinc-finger-containing proteins can be classified into evolutionary and functionally divergent protein families that share one or more domains in which a zinc ion is tetrahedrally coordinated by cysteines and histidines. The zinc finger domain defines one of the largest protein superfamilies in mammalian genomes; 46 different conserved zinc finger domains are listed in InterPro (http://www.ebi.ac.uk/InterPro). Zinc finger proteins can bind to DNA, RNA, other proteins, or lipids as a modular domain in combination with other conserved structures. Owing to this combinatorial diversity, different members of zinc finger superfamilies contribute to many distinct cellular processes, including transcriptional regulation, mRNA stability and processing, and protein turnover. Accordingly, mutations of zinc finger genes lead to aberrations in a broad spectrum of biological processes such as development, differentiation, apoptosis, and immunological responses. This study provides the first comprehensive classification of zinc finger proteins in a mammalian transcriptome. Specific detailed analysis of the SP/Kruppel-like factors and the E3 ubiquitin-ligase RING-H2 families illustrates the importance of such an analysis for a more comprehensive functional classification of large protein families. We describe the characterization of a new family of C2H2 zinc-finger-containing proteins and a new conserved domain characteristic of this family, the identification and characterization of Sp8, a new member of the Sp family of transcriptional regulators, and the identification of five new RING-H2 proteins.
Resumo:
An investigation was carried out into the galvanic corrosion of magnesium alloy AZ91D in contact with zinc, aluminium alloy A380 and 4150 steel. Specially designed test panels were used to measure galvanic currents under salt spray conditions. It was found that the distributions of the galvanic current densities on AZ91D and on the cathodes were different. An insulating spacer between the AZ91D anode and the cathodes could not eliminate galvanic corrosion. Steel was the worst cathode and aluminium the least aggressive to AZ91D. Corrosion products from the anode and cathodes appeared to be able to affect the galvanic corrosion process through an alkalisation, passivation, poisoning effect or shortcut effect. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Zincite and spinel phases are present in the complex slag systems encountered in zinc/lead sintering and zinc smelting processes. These phases form extensive solid solutions and are stable over a wide range of compositions, temperatures and oxygen partial pressures. Accurate information on the stability of these phases is required in order to develop thermodynamic models of these slag systems. Phase equilibria in the Fe–Zn–O system have been experimentally studied for a range of conditions, between 900°C and 1580°C and oxygen partial pressures (pO2) between air and metallic iron saturation, using equilibration and quenching techniques. The compositions of the phases were measured using Electron probe X-ray microanalysis (EPMA). The ferrous and ferric bulk iron concentrations were determined using a specially developed wet-chemical analysis procedure based on the use of ammonium metavanadate. XRD was used to confirm phase identification. A procedure was developed to overcome the problems associated with evaporation of zinc at low pO2 values and to ensure the achievement of equilibria. An isothermal section of the system FeO–Fe2O3–ZnO at high ZnO concentrations at 1200°C was constructed. The maximum solubilities of iron and zinc in zincite and spinel phases in equilibrium were determined at pO2 = 1 × 10-6 atm at 1200°C and 1300°C. The morphology of the zincite crystals sharply changes in air between 1200–1300°C from rounded to plate-like. This is shown to be associated with significant increase in total iron concentration, the additional iron being principally in the form of ferric iron. Calculations performed by FactSage with a thermodynamically optimised database have been compared with the experimental results.
Resumo:
Objective: To evaluate the efficacy of supplementation with zinc and vitamin A in Indigenous children hospitalised with acute lower respiratory infection (ALRI). Design: Randomised controlled, 2-by-2 factorial trial of supplementation with zinc and vitamin A. Setting and participants: 187 Indigenous children aged < 11 years hospitalised with 215 ALRI episodes at Alice Springs Hospital (April 2001 to July 2002). Interventions: Vitamin A was administered on Days 1 and 5 of admission at a dose of 50 000 IU (infants under 12 months), or 100 000 IU; and zinc sulfate was administered daily for 5 days at a daily dose of 20 mg (infants under 12 months) or 40 mg. Main outcome measure: Time to clinical recovery from fever and tachypnoea, duration of hospitalisation, and readmission for ALRI within 120 days. Results: There was no clinical benefit of supplementation with vitamin A, zinc or the two combined, with no significant difference between zinc and no-zinc, vitamin A and no-vitamin A or zinc + vitamin A and placebo groups in time to resolution of fever or tachypnoea, or duration of hospitalisation. Instead, we found increased morbidity; children given zinc had increased risk of readmission for ALRI within 120 days (relative risk, 2.4; 95% CI, 1.003–6.1). Conclusion: This study does not support the use of vitamin A or zinc supplementation in the management of ALRI requiring hospitalisation in Indigenous children living in remote areas. Even in populations with high rates of ALRI and poor living conditions, vitamin A and zinc therapy may not be useful. The effect of supplementation may depend on the prevalence of deficiency of these micronutrients in the population.
Resumo:
The stratiform Century Zn-Pb deposit and the discordant Zn-Pb lode deposits of the Burketown mineral field, northern Australia, host ore and gangue minerals with primary fluid inclusions that have not been affected by the Isan orogeny, thus providing a unique opportunity to investigate the nature of the ore-forming brines. All of the deposits are hosted in shales and siltstones belonging to the Isa superbasin and comprise sphalerite, pyrite, carbonate, quartz, galena, minor chalcopyrite, and minor illite. According to Pb model ages, the main ore stage of mineralization at Century formed at I575 Ma, some 20 m.y. after deposition of the host shale sequence. Microthermometry on undeformed, primary fluid inclusions hosted in porous sphalerite shows that the Zn at Century was transported to the deposit by a homogeneous, Ca2+- and Na+-bearing brine with a salinity of 21.6 wt percent NaCl equiv. delta D-fluid of the fluid inclusion water ranges from -89 to -83 per mil, consistent with a basinal brine that evolved from meteoric water. Fluid inclusion homogenization temperatures range between 74 degrees and 125 degrees C, which are lower than the 120 degrees to 160 degrees C range calculated from vitrinite reflectance and illite crystallinity data from the deposit. This discrepancy indicates that mineralization likely formed at 50 to 85 Mpa, corresponding to a depth of 1,900 to 3,100 m. Transgressive galena-sphalerite veins that cut stratiform mineralization at Century and breccia-filled quartz-dolomite-sphalerite-galena veins in the discordant Zn-Pb lodes have Pb model ages between 1575 and 1485 Ma. Raman spectroscopy and microthermometry reveal that the primary fluid inclusions in these veins contain Ca2+, Na+. but they have lower salinities between 23 and 10 wt percent NaCl equiv and higher delta D-fluid values ranging from -89 to -61 per mil than fluid inclusions in porous sphalerite from Century. Fluid inclusion water from sphalerite in one of the lode deposits has delta O-18(fluid) values of 1.6 and 2.4 per mil, indistinguishable from delta O-18(fluid) values between -0.3 to +7.4 per mil calculated from the isotopic composition of coexisting quartz, dolomite, and illite. The trend toward lower salinities and higher delta D-fluid values relative to the earlier mineralizing fluids is attributed to mixing between the fluid that formed Century and a seawater-derived fluid from a different source. Based on seismic data from the Lawn Hill platform and paragenetic and geochemical results from the Leichhardt River fault trough to the south, diagenetic aquifers in the Underlying Calvert superbasin appear to have been the most likely sources for the fluids that formed Century and the discordant lode deposits. Paragenetically late sphalerite and calcite cut sphalerite, quartz, and dolomite in the lode deposits and contain Na+-dominated fluid inclusions with much lower salinities than their older counterparts. The isotopic composition of calcite also indicates delta O-18(fluid) from 3.3 to 10.7 per mil, which is larger than the range obtained from synmineralization minerals, supporting the idea that a unique fluid source was involved. The absolute timing of this event is unclear, but a plethora of Pb model, K-Ar, and Ar-40/Ar-39 ages between 1440 and 1300 Ma indicate that a significant volume of fluid was mobilized at this time. The deposition of the Roper superbasin from ca. 1492 +/- 4 Ma suggests that these late veins formed from fluids that may have been derived from aquifers in overlying sediments of the Roper superbasin. Clear, buck, and drusy quartz in veins unrelated to any form of Pb-Zn mineralization record the last major fluid event in the Burketown mineral field and form distinct outcrops and ridges in the district. Fluid inclusions in these veins indicate formation from a low-salinity, 300 degrees +/- 80 degrees C fluid. Temperatures approaching 300 degrees C recorded in organic matter adjacent to faults and at sequence boundaries correspond to K-Ar ages spanning 1300 to 1100 Ma, which coincides with regional hydrothermal activity in the northern Lawn Hill platform and the emplacement of the Lakeview Dolerite at the time of assemblage of the Rodinia supercontinent.
Zinc neurotoxicity is promoted by nerve growth factor but is prevented by leukaemia inhibitor factor