3 resultados para Zeta-potential
em University of Queensland eSpace - Australia
Resumo:
A phase diagram of the pseudoternary system ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and water with butanol as a cosurfactant was prepared. Areas containing optically isotropic, low viscosity one-phase systems were identified and systems therein designated as w/o droplet-, bicontinuous- or solution-type microemulsions using conductivity, viscosity, cryo-field emission scanning electron microscopy and self-diffusion NMR. Nanoparticles were prepared by interfacial polymerization of selected w/o droplet, bicontinuous- or solution-type microemulsions with ethyl-2-cyanoacrylate. Morphology of the particles and entrapment of the water-soluble model protein ovalbumin were investigated. Addition of monomer to the different types of microemulsions (w/o droplet, bicontinuous, solution) led to the formation of nanoparticles, which were similar in size (similar to 250 nm), polydispersity index (similar to 0.13), zeta-potential (similar to-17 mV) and morphology. The entrapment of the protein within these particles was up to 95%, depending on the amount of monomer used for polymerization and the type of microemulsion used as a polymerization template. The formation of particles with similar characteristics from templates having different microstructure is surprising, particularly considering that polymerization is expected to occur at the water-oil interface by base-catalysed polymerization. Dynamics within the template (stirring, viscosity) or indeed interfacial phenomena relating to the solid-liquid interface appear to be more important for the determination of nanoparticle morphology and characteristics than the microstructure of the template system. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Phase diagrams of the pseudoternary systems ethyloleate, polyoxyethylene 20 sorbitan mono-oleate/sorbitan monolaurate and propylene glycol with and without butanol as a co-surfactant were prepared. Areas containing optically isotropic, one-phase systems were identified and samples therein designated as droplet, bicontinuous or solution type microemulsions using conductivity, viscosity and self-diffusion NMR. Nanoparticles were prepared by polymerization of selected microemulsions with ethyl-2-cyanoacrylate and the morphology of the particles was investigated. Addition of monomer to all types of microemulsions led to the formation of nanoparticles, which had an average size of 244 +/- 25 nm, an average polydispersity index of 0.15 +/- 0.04 and a zeta-potential of -17 +/- 3 mV. The formation of particles from water-free microemulsions of different types is surprising, particularly considering that polymerization is expected to occur at a water-oil interface by base-catalysed polymerization. It would appear that propylene glycol is sufficiently nucleophilic to initiate the polymerization. The use of water-free microemulsions as templates for the preparation of poly (alkylcyanoacrylate) nanoparticles opens up interesting opportunities for the encapsulation of bioactives which do not have suitable properties for encapsulation on the basis of water-containing microemulsions.
Resumo:
The ability to control the surface properties and subsequent colloidal stability of dispersed particles has widespread applicability in many fields. Sub-micrometer fluorescent silica particles (reporters) can be used to actively encode the combinatorial synthesis of peptide libraries through interparticle association. To achieve these associations, the surface chemistry of the small fluorescent silica reporters is tailored to encourage robust adhesion to large silica microparticles onto which the peptides are synthesized. The interparticle association must withstand a harsh solvent environment multiple synthetic and washing procedures, and biological screening buffers. The encoded support beads were exposed to different solvents used for peptide synthesis, and different solutions used for biological screening including phosphate buffered saline (PBS), 2-[N-morpholino]ethane sulfonic acid (VIES) and a mixture of MES and N-(3-dimethyl-aminopropyl)-N'-ethylcarbodiimide (EDC). The number of reporters remaining adhered to the support bead was quantified after each step. The nature of the associations were explored and tested to optimize the efficiency of these phenomena. Results presented illustrate the influence of the surface functionality and polyelectrolyte modification of the reporters. These parameters were investigated through zeta potential and X-ray photoelectron spectroscopy.