47 resultados para ZN-SUPEROXIDE-DISMUTASE

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

As a facultative aerobe with a high iron requirement and a highly active aerobic respiratory chain, Neisseria gonorrhoeae requires defence systems to respond to toxic oxygen species such as superoxide. It has been shown that supplementation of media with 100 muM Mn(II) considerably enhanced the resistance of this bacterium to oxidative killing by superoxide. This protection was not associated with the superoxide dismutase enzymes of N. gonorrhoeae. In contrast to previous studies, which suggested that some strains of N. gonorrhoeae might not contain a superoxide dismutase, we identified a sodB gene by genome analysis and confirmed its presence in all strains examined by Southern blotting, but found no evidence for sodA or sodC. A sodB mutant showed very similar susceptibility to superoxide killing to that of wild-type cells, indicating that the Fe-dependent SOD B did not have a major role in resistance to oxidative killing under the conditions tested. The absence of a sodA gene indicated that the Mn-dependent protection against oxidative killing was independent of Mn-dependent SOD A. As a sodB mutant also showed Mn-dependent resistance to oxidative killing, then it is concluded that this resistance is independent of superoxide dismutase enzymes. Resistance to oxidative killing was correlated with accumulation of Mn(II) by the bacterium. We hypothesize that this bacterium uses Mn(II) as a chemical quenching agent in a similar way to the already established process in Lactobacillus plantarum. A search for putative Mn(II) uptake systems identified an ABC cassette-type system (MntABC) with a periplasmic-binding protein (MntC). An mntC mutant was shown to have lowered accumulation of Mn(II) and was also highly susceptible to oxidative killing, even in the presence of added Mn(II). Taken together, these data show that N. gonorrhoeae possesses a Mn(II) uptake system that is critical for resistance to oxidative stress.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Selective superoxide dismutase (SOD) mimetics are potentially useful in pathological conditions in which there is an overproduction of the superoxide anion O-2.(-). These pathological conditions include inflammation, ischemia/reperfusion, shock, various cardiovascular disorders, amyotrophic lateral sclerosis (ALS) and other neurodegenerative disorders. A major step forward in this field was the development of small-molecule selective SOD mimetics that penetrate cell membranes, These selective SOD mimetics catalytically remove O-2.(-) without interfering with nitric oxide (NO), peroxynitrite (ONOO-) or other radicals such as hydroxyl radical or hydrogen peroxide (H2O2). These selective SOD mimetics (SC-52608, SC-55858, M-40403 and M-40401) have been shown to have benefits in animal models of inflammation, ischemia/reperfusion, shock, thrombosis and diabetes. The next challenge with selective SOD mimetics is to develop therapeutic potential into therapeutic agents.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A mild degree of undernutrition brought about by restricting the amount of food in the diet is known to alter the life span of an animal. It has been hypothesised that this may be related to the effects of undernutrition on an animals anti-oxidant defense system. We have therefore, used real-time PCR (rt-PCR) techniques to determine the levels of mRNA expression for manganese superoxide dismutase (MnSOD), copper/zinc superoxide dismutase (Cu/ZnSOD), glutathione peroxidase 1 (GPx 1) and catalase in the brains of Quackenbush mice undernourished from conception until 21-post-natal days of age. It was found that 21- and 61-day-old undernourished mice had a deficit in the expression of Cu/ZnSOD in both the cerebellum and forebrain regions compared to age-matched controls. The expression of MnSOD was found to be greater in the cerebellum, but not the forebrain region, of 21-day-old undernourished mice. There were no significant differences in the expression of GPx 1 and catalase between control and undernourished or previously undernourished mice. Our results confirm that undernutrition during the early life of a mouse may disrupt some of the enzymes involved in the anti-oxidant defense systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The purpose of these experiments was to examine the effects of dietary antioxidant supplementation with vitamin E (VE) and alpha -lipoic acid (alpha -LA) on biochemical and physiological responses to in vivo myocardial ischemia-reperfusion (I-R) in aged rats. Male Fischer-334 rats (18 mo old) were assigned to either 1) a control diet (CON) or 2) a VE and alpha -LA supplemented diet (ANTIOX). After a 14-wk feeding period, animals in each group underwent an in vivo I-R protocol (25 min of myocardial ischemia and 15 min of reperfusion). During reperfusion, peak arterial pressure was significantly higher (P < 0.05) in ANTIOX animals compared with CON diet animals. I-R resulted in a significant increase (P < 0.05) in myocardial lipid peroxidation in CON diet animals but not in ANTIOX animals. Compared with ANTIOX animals, heart homogenates from CON animals experienced significantly less (P < 0.05) oxidative damage when exposed to five different in vitro radical producing systems. These data indicate that dietary supplementation with VE and -LA protects the aged rat heart from I-R-induced lipid peroxidation by scavenging numerous reactive oxygen species. Importantly, this protection is associated with improved cardiac performance during reperfusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ozone is a major air pollutant with adverse health effects which exhibit marked inter-individual variability. In mice, regions of genetic linkage with ozone-induced lung injury include the tumor necrosis factor-alpha (TNF), lymphotoxin-alpha (LTA), Toll-like receptor 4 (TLR4), superoxide dismutase (SOD2), and glutathione peroxidase (GPX1) genes. We genotyped polymorphisms in these genes in 51 individuals who had undergone ozone challenge. Mean change in FEV1 with ozone challenge, as a percentage of baseline, was -3% in TNF -308G/A or A/A individuals, compared with -9% in G/G individuals (p = 0.024). When considering TNF haplotypes, the smallest change in FEV1 with ozone exposure was associated with the TNF haplotype comprising LTA +252G/TNF -1031T/TNF -308A/TNF -238G. This association remained statistically significant after correction for age, sex, disease, and ozone concentration (p = 0.047). SOD2 or GPX1 genotypes were not associated with lung function, and the TLR4 polymorphism was too infrequent to analyze. The results of this study support TNF as a genetic factor for susceptibility to ozone-induced changes in lung function in humans, and has potential implications for stratifying health risks of air pollution.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Amyloid-beta peptide (A beta) is pivotal to the pathogenesis of Alzheimer disease. Here we report the formation of a toxic A beta-Cu2+ complex formed via a histidine-bridged dimer, as observed at Cu2+/ peptide ratios of > 0.6:1 by EPR spectroscopy. The toxicity of the A beta-Cu2+ complex to cultured primary cortical neurons was attenuated when either the pi- or tau-nitrogen of the imidazole side chains of His were methylated, thereby inhibiting formation of the His bridge. Toxicity did not correlate with the ability to form amyloid or perturb the acyl-chain region of a lipid membrane as measured by diphenyl- 1,3,5-hexatriene anisotropy, but did correlate with lipid peroxidation and dityrosine formation. P-31 magic angle spinning solid-state NMR showed that A beta and A beta-Cu2+ complexes interacted at the surface of a lipid membrane. These findings indicate that the generation of the A beta toxic species is modulated by the Cu2+ concentration and the ability to form an intermolecular His bridge.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The anaerobic protozoa Giardia duodenalis, Trichomonas vaginalis, and Entamoeba histolytica infect up to a billion people each year. G. duodenalis and E. histolytica are primarily pathogens of the intestinal tract, although E. histolytica can form abscesses and invade other organs, where it can be fatal if left untreated. T. vaginalis infection is a sexually transmitted infection causing vaginitis and acute inflammatory disease of the genital mucosa. T. vaginalis has also been reported in the urinary tract fallopian tubes, and pelvis and can cause pneumonia, bronchitis, and oral lesions. Respiratory infections can be acquired perinatally. T. vaginalis infections have been associated with preterm delivery, low birth weight, and increased mortality as well as predisposing to human immunodeficiency virus infection, AIDS, and cervical cancer. All three organisms lack mitochondria and are susceptible to the nitroimidazole metronidazole because of similar low-redox-potential anaerobic metabolic pathways. Resistance to metronidazole and other drugs has been observed clinically and in the laboratory. Laboratory studies have identified the enzyme that activates metronidazole, pyruvate:ferredoxin oxidoreductase, to its nitroso form and distinct mechanisms of decreasing drug susceptibility that are induced in each organism. Although the nitroimidazoles have been the drug family of choice for treating the anaerobic protozoa, G. duodenalis is less susceptible to other antiparasitic drugs, such as furazolidone, albendazole, and quinacrine. Resistance has been demonstrated for each agent and the mechanism of resistance has been investigated. Metronidazole resistance in T. vaginalis is well documented, and the principal mechanisms have been defined Bypass metabolism, such as alternative oxidoreductases, have been discovered in both organisms. Aerobic versus anaerobic resistance in T. vaginalis is discussed. Mechanisms of metronidazole resistance in E. histolytica have recently been investigated ruing laboratory-induced resistant isolates. Instead of downregulation of the pyruvate:ferredoxin oxidoreductase and ferredoxin pathway as seen in G. duodenalis and T. vaginalis, E. histolytica induces oxidative stress mechanisms, including superoxide dismutase and peroxiredoxin. The review examines the value of investigating both clinical and laboratory-induced syngeneic drug-resistant isolates and dissection of the complementary data obtained. Comparison of resistance mechanisms in anaerobic bacteria and the parasitic protozoa is discussed as well as the value of studies of the epidemiology of resistance.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A simple technique for routine, reproducible global surveillance of the drug susceptibility status of the anaerobic protozoa Trichomonas, Entamoeba, and Giardia is described, Data collected using this technique can be readily compared among different laboratories and with previously reported data. The technique employs a commercially available sachet and bag system to generate a low-oxygen environment and log, drug dilutions in microtiter plates, which can be monitored without aerobic exposure, to assay drug-resistant laboratory lines and clinically resistant isolates. MICs (after 2 days) of 3.2 and 25 muM indicated metronidazole-sensitive and highly clinically resistant isolates of T. vaginalis in anaerobic assays, respectively. The aerobic MICs were 25 and > 200 muM. MICs (1 day) of 12.5 to 25 muM were found for axenic lines of E. histolytica, and MICs for G. duodenalis (3 days) ranged from 6.3 muM for metronidazole-sensitive isolates to 50 muM for laboratory metronidazole-resistant lines. This technique should encourage more extensive monitoring of drug resistance in these organisms.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

psaA encodes a 37-kDa pneumococcal lipoprotein which is part of an ABC Mn(II) transport complex. Streptococcus pneumoniae D39 psaA mutants have previously been shown to be significantly less virulent than wild-type D39, but the mechanism underlying the attenuation has not been resolved. In this study, we have shown that psaA and psaD mutants are highly sensitive to oxidative stress, i.e., to superoxide and hydrogen peroxide, which might explain why they are less virulent than the wild-type strain. Our investigations revealed altered expression of the key oxidative-stress response enzymes superoxide dismutase and NADH oxidase in psaA and psaD mutants, suggesting that PsaA and PsaD may play important roles in the regulation of expression of oxidative-stress response enzymes and intracellular redox homeostasis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Radical-mediated oxidative damage of skeletal muscle membranes has been implicated in the fatigue process. Vitamin E (VE) is a major chain breaking antioxidant that has been shown to reduce contraction-mediated oxidative damage. We hypothesized that VE deficiency would adversely affect Muscle contractile function, resulting in a more rapid development of muscular fatigue during exercise. To test this postulate, rats were fed either a VE-deficient (EDEF) diet or a control (CON) diet containing VE. Following a 12-week feeding period, animals were anesthetized and mechanically ventilated. Muscle endurance (fatigue) and contractile properties were evaluated using an in situ preparation of the tibialis anterior (TA) muscle. Contractile properties of the TA muscle were determined before and after a fatigue protocol. The muscle fatigue protocol consisted of 60 min of repetitive contractions (250 ms trains at 15 Hz; duty cycle = I I %) of the TA muscle. Prior to the fatigue protocol, no significant differences existed in the force-frequency curves between EDEF and CON animals. At the completion of the fatigue protocol, muscular force production was significantly (P

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Atm gene-disrupted mice recapitulate the majority of characteristics observed in patients with the genetic disorder ataxia-telangiectasia (A-T). However, although they exhibit defects in neuromotor function and a distinct neurological phenotype, they do not show the progressive neurodegeneration seen in human patients, but there is evidence that ataxia-telangiectasia mutated ( Atm)-deficient animals have elevated levels of oxidized macromolecules and some neuropathology. We report here that in vitro survival of cerebellar Purkinje cells from both Atm knock-out and Atm knock-in mice was significantly reduced compared with their wild-type littermates. Although most of the Purkinje neurons from wild-type mice exhibited extensive dendritic elongation and branching under these conditions, most neurons from Atm-deficient mice had dramatically reduced dendritic branching. An antioxidant ( isoindoline nitroxide) prevented Purkinje cell death in Atm-deficient mice and enhanced dendritogenesis to wild-type levels. Furthermore, administration of the antioxidant throughout pregnancy had a small enhancing effect on Purkinje neuron survival in Atm gene-disrupted animals and protected against oxidative stress in older animals. These data provide strong evidence for a defect in the cerebellum of Atm-deficient mice and suggest that oxidative stress contributes to this phenotype.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

It has been reported that Neisseria gonorrhoeae possesses a very high level of catalase activity, but the regulation of catalase expression has not been investigated extensively. In Escherichia coli and Salmonella enterica serovar Typhimurium, it has been demonstrated that OxyR is a positive regulator of hydrogen peroxide-inducible genes, including the gene encoding catalase. The oxyR gene from N. gonorrhoeae was cloned and used to complement an E. coli oxyR mutant, confirming its identity and function. The gene was inactivated by inserting a kanamycin resistance cassette and used to make a knockout allele on the chromosome of N. gonorrhoeae strain 1291. In contrast to E. coli, the N. gonorrhoeae oxyR::kan mutant expressed ninefold-more catalase activity and was more resistant to hydrogen peroxide killing than the wild type. These data are consistent with OxyR in N. gonorrhoeae acting as a repressor of catalase expression.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Defenses against oxidative stress are crucial for the survival of the pathogens Neisseria meningitidis and Neisseria gonorrhoeae. An Mn(II) uptake system is involved in manganese (Mn)-dependent resistance to superoxide radicals in N. gonorrhoeae. Here, we show that accumulation of Mn also confers resistance to hydrogen peroxide killing via a catalase-independent mechanism. An mntC mutant of N. meningitidis is susceptible to oxidative killing, but supplementation of growth media with Mn does not enhance the organism's resistance to oxidative killing. N. meningitidis is able to grow in the presence of millimolar levels of Mn ion, in contrast to N. gonorrhoeae, whose growth is retarded at Mn concentrations >100 mumol/L, indicating that Mn homeostasis in the 2 species is probably quite different. N. meningitidis superoxide dismutase B plays a role in protection against oxidative killing. However, a sodC mutant of N. meningitidis is no more sensitive to oxidative killing than is the wild type. A cytochrome c peroxidase (Ccp) is present in N. gonorrhoeae but not in N. meningitidis. Investigations of a ccp mutant revealed a role for Ccp in protection against hydrogen peroxide killing. These differences in oxidative defenses in the pathogenic Neisseria are most likely a result of their localization in different ecological niches.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The AP-2 transcription factor family is presumed to play an important role in the regulation of the keratinocyte squamous differentiation program; however, limited functional data are available to support this. In the present study, the activity and regulation of AP-2 were examined in differentiating human epidermal keratinocytes. We report that (1) AP-2 transcriptional activity decreases in differentiated keratinocytes but remains unchanged in differentiation-insensitive squamous cell carcinoma cell lines, (2) diminished AP-2 transcriptional activity is associated with a loss of specific DNA-bound AP-2 complexes, and (3) there is an increase in the ability of cytoplasmic extracts, derived from differentiated keratinocytes, to phosphorylate AP-2alpha and AP-2beta when cells differentiate. In contrast, extracts from differentiation-insensitive squamous cell carcinoma cells are unable to phosphorylate AP-2 proteins. Finally, the phosphorylation of recombinant AP-2alpha by cytosolic extracts from differentiated keratinocytes is associated with decreased AP-2 DNA-binding activity. Combined, these data indicate that AP-2 trans-activation and DNA-binding activity decrease as keratinocytes differentiate, and that this decreased activity is associated with an enhanced ability to phosphorylate AP-2alpha and beta.