3 resultados para XENON
em University of Queensland eSpace - Australia
Computational and experimental study of the interactions between xenon and crown ethers by 129Xe NMR
Resumo:
In this paper, we investigate the effect of the solid surface on the fluid-fluid intermolecular potential energy. This modified fluid-fluid interaction energy due to the inducement of a solid surface is used in the grand canonical Monte Carlo (GCMC) simulation of various noble gases, nitrogen, and methane on graphitized thermal carbon black. This effect is such that the effective interaction potential energy between two particles close to surface is less than the potential energy if the solid substrate is not present. With this modification the GCMC simulation results agree extremely well with the experimental data over a wide range of pressures while the simulation results with the unmodified potential energy give rise to a shoulder near the neighborhood of monolayer coverage and the significant overprediction of the second and higher layer coverages. In particular the unmodified GCMC results exhibit very sharp change in those higher layers while the experimental data have a much gradual change in the uptake. We will illustrate this theory with adsorption data of argon, xenon, neon, nitrogen, and methane on graphitized thermal carbon black.
Resumo:
In this paper, we investigate the effects of various potential models in the description of vapor–liquid equilibria (VLE) and adsorption of simple gases on highly graphitized thermal carbon black. It is found that some potential models proposed in the literature are not suitable for the description of VLE (saturated gas and liquid densities and the vapor pressure with temperature). Simple gases, such as neon, argon, krypton, xenon, nitrogen, and methane are studied in this paper. To describe the isotherms on graphitized thermal carbon black correctly, the surface mediation damping factor introduced in our recent publication should be used to calculate correctly the fluid–fluid interaction energy between particles close to the surface. It is found that the damping constant for the noble gases family is linearly dependent on the polarizability, suggesting that the electric field of the graphite surface has a direct induction effect on the induced dipole of these molecules. As a result of this polarization by the graphite surface, the fluid–fluid interaction energy is reduced whenever two particles are near the surface. In the case of methane, we found that the damping constant is less than that of a noble gas having the similar polarizability, while in the case of nitrogen the damping factor is much greater and this could most likely be due to the quadrupolar nature of nitrogen.