4 resultados para X-RAY SCATTERING DATA ANALYSIS
em University of Queensland eSpace - Australia
Resumo:
Absolute calibration relates the measured (arbitrary) intensity to the differential scattering cross section of the sample, which contains all of the quantitative information specific to the material. The importance of absolute calibration in small-angle scattering experiments has long been recognized. This work details the absolute calibration procedure of a small-angle X-ray scattering instrument from Bruker AXS. The absolute calibration presented here was achieved by using a number of different types of primary and secondary standards. The samples were: a glassy carbon specimen, which had been independently calibrated from neutron radiation; a range of pure liquids, which can be used as primary standards as their differential scattering cross section is directly related to their isothermal compressibility; and a suspension of monodisperse silica particles for which the differential scattering cross section is obtained from Porod's law. Good agreement was obtained between the different standard samples, provided that care was taken to obtain significant signal averaging and all sources of background scattering were accounted for. The specimen best suited for routine calibration was the glassy carbon sample, due to its relatively intense scattering and stability over time; however, initial calibration from a primary source is necessary. Pure liquids can be used as primary calibration standards, but the measurements take significantly longer and are, therefore, less suited for frequent use.
Resumo:
Crystals of purified heterodimeric sulfite dehydrogenase from Starkeya novella have been grown using vapour diffusion. X-ray diffraction data have been collected from crystals of the native protein at lambda=1.0 Angstrom and close to the iron absorption edge at lambda=1.737 Angstrom. The crystals belong to space group P2(1)2(1)2, with unit-cell parameters a=97.5, b=92.5, c=55.9 Angstrom. Native data have been recorded to 1.8 Angstrom resolution and Fe-edge data to 2.5 Angstrom.
Resumo:
Importin-alpha is the nuclear import receptor that recognizes cargo proteins with nuclear localization sequences (NLSs). Tile study of NLS peptidomimetics can provide a better understanding of the requirements for the molecular recognition of cargo proteins by importin-alpha, and potentially engender a large number of applications in medicine. Importin-a was crystallized with a set of six NLS peptidomimetics, and X-ray diffraction data were collected in the range 2.1-2.5 angstrom resolution. Preliminary electron density calculations show that the ligands are present in the crystals. (c) 2005 Elsevier B.V All rights reserved.
Resumo:
New tin(IV) complexes of empirical formula, Sn(SNNNS)I-2 (SNNNS = anionic form of the 2,6-diacetylpyridine Schiff bases of S-methyl- or S-benzyldithiocarbazate) have been prepared and characterized by a variety of physico-chemical techniques. The structure of Sn(dapsme)I-2 has been determined by single crystal X-ray crystallographic structural analysis. The complex has a seven-coordinate distorted pentagonal-bipyramidal geometry with the Schiff base coordinated to the tin(IV) ion as a dinegatively charged pentadentate chelating agent via the pyridine nitrogen atom, the two azomethine nitrogen atoms and the two thiolate sulfur atoms. The ligand occupies the equatorial plane and the iodo ligands are coordinated to the tin(IV) ion at axial positions. The distortion from an ideal pentagonal bipyramidal geometry is attributed to the restricted bite size of the pentadentate ligands. (C) 2004 Elsevier Ltd. All rights reserved.