4 resultados para Wyoming

em University of Queensland eSpace - Australia


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first terrestrial Pb-isotope paradox refers to the fact that on average, rocks from the Earth's surface (i.e. the accessible Earth) plot significantly to the right of the meteorite isochron in a common Pb-isotope diagram. The Earth as a whole, however, should plot close to the meteorite isochron, implying the existence of at least one terrestrial reservoir that plots to the left of the meteorite isochron. The core and the lower continental crust are the two candidates that have been widely discussed in the past. Here we propose that subducted oceanic crust and associated continental sediment stored as garnetite slabs in the mantle Transition Zone or mid-lower mantle are an additional potential reservoir that requires consideration. We present evidence from the literature that indicates that neither the core nor the lower crust contains sufficient unradiogenic Pb to balance the accessible Earth. Of all mantle magmas, only rare alkaline melts plot significantly to the left of the meteorite isochron. We interpret these melts to be derived from the missing mantle reservoir that plots to the left of the meteorite isochron but, significantly, above the mid-ocean ridge basalt (MORB)-source mantle evolution line. Our solution to the paradox predicts the bulk silicate Earth to be more radiogenic in Pb-207/Pb-204 than present-day MORB-source mantle, which opens the possibility that undegassed primitive mantle might be the source of certain ocean island basalts (OIB). Further implications for mantle dynamics and oceanic magmatism are discussed based on a previously justified proposal that lamproites and associated rocks could derive from the Transition Zone.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Comparison of initial Pb-isotope signatures of several early Archaean (3.65-3.82 Ga) lithologies (orthogneisses and metasediments) and minerals (feldspar and galena) documents the existence of substantial isotopic heterogeneity in the early Archaean, particularly in the Pb-207/Pb-204 ratio. The magnitude of isotopic variability at 3.82-3.65 Ga requires source separation between 4.3 and 4.1 Ga, depending on the extent of U/Pb fractionation possible in the early Earth. The isotopic heterogeneity could reflect the coexistence of enriched and depleted mantle domains or the separation of a terrestrial protocrust with a U-238/Pb-204 (mu) that was ca. 20-30% higher than coeval mantle. We prefer this latter explanation because the high-p signature is most evident in metasediments (that formed at the Earth's surface). This interpretation is strengthened by the fact that no straightforward mantle model can be constructed for these high-mu lithologies without violating bulk silicate Earth constraints. The Pb-isotope evidence for a long-lived protocrust complements similar Hf-isotope data from the Earth's oldest zircons, which also require an origin from an enriched (low Lu/Hf) environment. A model is developed in which greater than or equal to3.8-Ga tonalite and monzodiorite gneiss precursors (for one of which we provide zircon U-Pb data) are not mantle-derived but formed by remelting or differentiation of ancient (ca. 4.3 Ga) basaltic crust which had evolved with a higher U/Pb ratio than coeval mantle in the absence of the subduction process. With the initiation of terrestrial subduction at, we propose, ca. 3.75 Ga, most of the greater than or equal to3.8-Ga basaltic shell (and its differentiation products) was recycled into the mantle, because of the lack of a stabilising mantle lithosphere. We argue that the key event for preservation of all greater than or equal to3.8-Ga terrestrial crust was the intrusion of voluminous granitoids immediately after establishment of global subduction because of complementary creation of a lithospheric keel. Furthermore, we argue that preservation of !3.8-Ga material (in situ rocks and zircons) globally is restricted to cratons with a high U/Pb source character (North Atlantic, Slave, Zimbabwe, Yilgarn, and Wyoming), and that the Pb-isotope systematics of these provinces are ultimately explained by reworking of material that was derived from ca. 4.3 Ga (i.e. Hadean) basaltic crust.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We compared vegetation structure used by 14 bird species during the 1998 and 1999 breeding seasons to determine what habitat features best accounted for habitat division and community organization in Utah juniper (Juniperus osteosperma) woodlands of southwestern Wyoming. Habitat use was quantified by measuring 24 habitat variables in 461 bird-centered quadrats, each 0.04 ha in size. Using discriminant function analysis, we differentiated between habitat used by 14 bird species along 3 habitat dimensions: (1) variation in shrub cover, overstory juniper cover, mature tree density, understory height, and decadent tree density; (2) a gradient composed of elevation and forb cover; and (3) variation in grass cover, tree height, seedling/sapling cover, and bare ground/rock cover. Of 14 species considered, 9 exhibited substantial habitat partitioning: Mourning Dove (Zenaida macroura), Bewick's Wren (Thryomanes bewickii), Blue-gray Gnatcatcher (Polioptila caerulea), Mountain Bluebird (Sialia currucoides), Plumbeous Vireo (Vireo plumbeus), Green-tailed Towhee (Pipilo chlorurus), Brewer's Sparrow (Spizella breweri), Dark-eyed Junco (Junco hyemalis), and Cassin's Finch (Carpodacus cassinii). Our results indicate juniper bird communities of southwestern Wyoming are organized along a 3-dimensional habitat gradient composed of woodland maturity, elevation, and juniper recruitment. Because juniper birds partition habitat along successional and altitudinal gradients, indiscriminate woodland clearing as well as continued fire suppression will alter species composition. Restoration efforts should ensure that all successional stages of juniper woodland are present on the landscape.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

U-Pb zircon ages from the exposed Sask craton are 2450-3100 Ma, from the Peter Lake Domain 2575-2640 Ma, and from rocks of the Trans-Hudson orogen 1840-1880 Ma. U-Pb monazite and zircon ages of post-orogenic pegmatites and aplites are 1770-1800 Ma. Common Pb and Sm-Nd isotopic compositions of post-orogenic intrusions, as probes of crust beneath the orogen, were compared to Sask craton rocks and ca. 1850 Ma orogenic rocks to infer the origin and subsurface distribution of the Sask craton within the internides of the Trans-Hudson orogen. Results show that post-orogenic intrusions within most of the Glennie Domain and Hanson Lake block were derived, at least in part, from Archean source materials, demonstrating that the Sask craton lies beneath Paleoproterozoic orogenic rocks present at the surface. In contrast, common Pb and Sm-Nd isotopic compositions from pegmatites and aplites of the La Ronge Domain are essentially identical with those of the Paleoproterozoic orogenic rocks into which they are intruded, indicating derivation by partial melting of similar rocks. Thus, if the Sask craton extended to the west beneath the La Ronge Domain, it was beneath the zone of melting that produced the post-orogenic intrusions, making it unlikely that the Sask craton is a detached part of the Hearne craton. Many samples from the Sask craton have elevated Pb-208/Pb-204 ratios, unlike Superior craton or Hearne craton rocks, suggesting that the Sask craton was derived from an exotic source, such as the Wyoming craton, which shares similar elevated Pb-208/Pb-204 ratios.