10 resultados para Woolen and worsted manufacture.

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coronary and peripheral artery bypass grafting is commonly used to relieve the symptoms of vascular deficiencies, but the Supply Of autologous artery or vein may not be sufficient or suitable for multiple bypass or repeat procedures, necessitating the use of other materials. Synthetic materials are suitable for large bore arteries but often thrombose when used in smaller arteries. Suitable replacement grafts must have appropriate characteristics, including resistance to infection, low immunogenicity and good biocompatability and thromboresistance, with appropriate mechanical and physiological properties and cheap and fast manufacture. Current avenues of graft development include coating synthetic grafts with either biological chemicals or cells with anticoagulatory properties. Matrix templates or acellular tubes of extracellular matrix (such as collagen) may be coated or infiltrated with cultured cells. Once placed into the artery, these grafts may become colonised by host cells and gain many of the properties of normal artery. Tissue-engineered blood vessels may also be formed from layers of human vascular cells grown in culture. These engineered vessels have many of the characteristics of arteries formed in vivo. Artificial arteries may be also be derived from peritoneal granulation tissue in body bioreactors by adapting the body's natural wound healing response to produce a hollow tube. (C) 2003 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the extrusion manufacture of starch-based thermoplastics, such as biodegradable packaging materials, glycerol is an effective additive as a plasticiser, that is, to diminish the brittle nature of the product and provide the desired extent of flexibility. However, the addition of glycerol may also affect the gelatinisation behaviour of the starch-water mixture, and hence the required processing conditions for producing a homogeneously gelatinised starch-based material. The effect of glycerol on the gelatinisation of wheat starch was studied using differential scanning calorimetry (DSC). Mixtures of starch, water and glycerol were investigated with a water content ranging from 12 - 40% and a glycerol concentration up to 75%. Dependent on composition, the enthalpy of gelatinisation ranged from 1.7 - 12.6 J/g (on a dry starch basis), while the onset and peak temperatures varied from 54 to 86 degreesC and 60 to 90 degreesC, respectively. As expected, water acted as a plasticiser in that the onset temperature for gelatinisation (TO) decreased with increasing moisture content. Glycerol, however, increased To. It is shown that the T-0 of starch-glycerol-water mixtures may be predicted on the basis of the effective moisture content of the starch fraction of these mixtures resulting from the relative speed of moisture absorption by glycerol and starch, respectively. Moisture sorption kinetics of wheat starch and glycerol in 100% relative humidity were determined and used to predict the preferential water absorption by glycerol in starch-glycerol-water mixtures and hence the resulting T-0 of the system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Children bear disproportionate consequences of armed conflict. The 21st century continues to see patterns of children enmeshed in international violence between opposing combatant forces, as victims of terrorist warfare, and, perhaps most tragically of all, as victims of civil wars. Innocent children so often are the victims of high-energy wounding from military ordinance. They sustain high-energy tissue damage and massive burns - injuries that are not commonly seen in civilian populations. Children have also been deliberately targeted victims in genocidal civil wars in Africa in the past decade, and hundreds of thousands have been killed and maimed in the context of close-quarter, hand-to-hand assaults of great ferocity. Paediatricians serve as uniformed military surgeons and as civilian doctors in both international and civil wars, and have a significant strategic role to play as advocates for the rights and welfare of children in the context of the evolving 'Laws of War'. One chronic legacy of contemporary warfare is blast injury to children from landmines. Such blasts leave children without feet or lower limbs, with genital injuries, blindness and deafness. This pattern of injury has become one of the post-civil war syndromes encountered by all intensivists and surgeons serving in four of the world's continents. The continued advocacy for the international ban on the manufacture, commerce and military use of antipersonnel landmines is a part of all paediatricians' obligation to promote the ethos of the Laws of War. Post-traumatic stress disorder remains an undertreated legacy of children who have been trapped in the shot and shell of battle as well as those displaced as refugees. An urgent, unfocused and unmet challenge has been the increase in, and plight of, child soldiers themselves. A new class of combatant comprises these children, who also become enmeshed in the triad of anarchic civil war, light-weight weaponry and drug or alcohol addiction. The International Criminal Court has outlawed as a War Crime, the conscription of children under 15 years of age. Nevertheless, there remain more than 300 000 child soldiers active and enmeshed in psychopathic violence as part of both civil and international warfare. The typical profile of a child soldier is of a boy between the ages of 8 and 18 years, bonded into a group of armed peers, almost always an orphan, drug or alcohol addicted, amoral, merciless, illiterate and dangerous. Paediatricians have much to do to protect such war-enmeshed children, irrespective of the accident of their place of birth. Only by such vigorous and maintained advocacy can the world's children be better protected from the scourge of future wars.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The manufacture of a radio frequency filter box using high pressure die casting (HPDC) is compared to the traditional high speed machining route. This paper describes an industrial exercise that concluded HPDC to be an economical and appropriate method to produce larger volumes of thin-walled telecommunications components. Modifications to the component design were made to make the component suitable for the HPDC process. Development of the die design through simulation modelling is described. The wrought alloy was replaced by near-eutectic Al-Si die casting alloy that was found to give better temperature stability performance. Apart from the economic benefits, HPDC was found to give lower filter efficiency losses through better surface finish. The effects of HPDC process variables, such as intensification pressure and injection piston velocity, on component quality, particularly porosity levels, were investigated. The pressure was analysed in terms of HPDC machine set pressure and the pressure measured in the die cavity by pressure sensors. Porosity was found to decrease with increased pressure and slightly increase with higher casting velocities.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Understanding the interfacial interactions between the nanofiller and polymer matrix is important to improve the design and manufacture of polymer nanocomposites. This paper reports a molecular dynamic Study on the interfacial interactions and structure of a clay-based polyurethane intercalated nanocomposite. The results show that the intercalation of surfactant (i.e. dioctadecyldlmethyl ammonium) and polyurethane (PU) into the nanoconfined gallery of clay leads to the multilayer structure for both surfactant and PU, and the absence of phase separation for PU chains. Such structural characteristics are attributed to the result of competitive interactions among the surfactant, PU and the clay surface, including van der Waals, electrostatic and hydrogen bonding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper reviews the recent research and development of clay-based polymer nanocomposites. Clay minerals, due to their unique layered structure, rich intercalation chemistry and availability at low cost, are promising nanoparticle reinforcements for polymers to manufacture low-cost, lightweight and high performance nanocomposites. We introduce briefly the structure, properties and surface modification of clay minerals, followed by the processing and characterization techniques of polymer nanocomposites. The enhanced and novel properties of such nanocomposites are then discussed, including mechanical, thermal, barrier, electrical conductivity, biodegradability among others. In addition, their available commercial and potential applications in automotive, packaging, coating and pigment, electrical materials, and in particular biomedical fields are highlighted. Finally, the challenges for the future are discussed in terms of processing, characterization and the mechanisms governing the behaviour of these advanced materials.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Virus-like particles (VLPs) are of interest in vaccination, gene therapy and drug delivery, but their potential has yet to be fully realized. This is because existing laboratory processes, when scaled, do not easily give a compositionally and architecturally consistent product. Research suggests that new process routes might ultimately be based on chemical processing by self-assembly, involving the precision manufacture of precursor capsomeres followed by in vitro VLP self-assembly and scale-up to required levels. A synergistic interaction of biomolecular design and bioprocess engineering (i.e. biomolecular engineering) is required if these alternative process routes and, thus, the promise of new VLP products, are to be realized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper is aimed at establishing a particular chronological priority issue in the convoluted history of artificial cornea. According to existing records, the first keratoprosthesis made from polyurethane was developed by Caldwell and Jacob-Labarre in the late 1980s. This paper demonstrates that in fact the first polyurethane keratoprosthesis was proposed and designed in 1985 by Lawrence Hirst, an Australian ophthalmologist then working in St Louis, USA. The first prototype was manufactured in January 1986 by Thermedics Inc according to Dr Hirst's instructions from Tecoflex, a transparent polyurethane developed by the same company. This keratoprosthesis, which also had a porous skirt, was inserted intralamellarly in a monkey cornea and followed up clinically for about 3 months. There were no significant postoperative complications, and the histology of the explant indicated proper biointegration of the prosthetic skirt within the host stromal tissue. Because of a delay in the manufacture of further prototypes and to Dr Hirst's decision to return to Australia, the project was eventually abandoned. As no report was published on this development, the present paper is entirely based on original documents held in Dr Hirst's archives.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Milk obtained from cows on 2 subtropical dairy feeding systems were compared for their suitability for Cheddar cheese manufacture. Cheeses were made in a small-scale cheesemaking plant capable of making 2 blocks ( about 2 kg each) of Cheddar cheese concurrently. Its repeatability was tested over 10 separate cheesemaking days with no significant differences being found between the 2 vats in cheesemaking parameters or cheese characteristics. In the feeding trial, 16 pairs of Holstein - Friesian cows were used in 2 feeding systems (M1, rain-grown tropical grass pastures and oats; and M5, a feedlot, based on maize/barley silage and lucerne hay) over 2 seasons ( spring and autumn corresponding to early and late lactation, respectively). Total dry matter, crude protein (kg/cow. day) and metabolisable energy (MJ/cow.day) intakes were 17, 2.7, and 187 for M1 and 24, 4, 260 for M5, respectively. M5 cows produced higher milk yields and milk with higher protein and casein levels than the M1 cows, but the total solids and fat levels were similar (P > 0.05) for both M1 and M5 cows. The yield and yield efficiency of cheese produced from the 2 feeding systems were also not significantly different. The results suggest that intensive tropical pasture systems can produce milk suitable for Cheddar cheese manufacture when cows are supplemented with a high energy concentrate. Season and stage of lactation had a much greater effect than feeding system on milk and cheesemaking characteristics with autumn ( late lactation) milk having higher protein and fat contents and producing higher cheese yields.