34 resultados para Wooden slab
em University of Queensland eSpace - Australia
Resumo:
Direct and simultaneous observation of root growth and plant water uptake is difficult because soils are opaque. X-ray imaging techniques such as projection radiography or Computer Tomography (CT) offer a partial alternative to such limitations. Nevertheless, there is a trade-off between resolution, large field-of-view and 3-dimensionality: With the current state of the technology, it is possible to have any two. In this study, we used X-ray transmission through thin-slab systems to monitor transient saturation fields that develop around roots as plants grow. Although restricted to 2-dimensions, this approach offers a large field-of-view together with high spatial and dynamic resolutions. To illustrate the potential of this technology, we grew peas in 1 cm thick containers filled with soil and imaged them at regular intervals. The dynamics of both the root growth and the water content field that developed around the roots could be conveniently monitored. Compared to other techniques such as X-ray CT, our system is relatively inexpensive and easy to implement. It can potentially be applied to study many agronomic problems, such as issues related to the impact of soil constraints (physical, chemical or biological) on root development.
Resumo:
We use published and new trace element data to identify element ratios which discriminate between arc magmas from the supra-subduction zone mantle wedge and those formed by direct melting of subducted crust (i.e. adakites). The clearest distinction is obtained with those element ratios which are strongly fractionated during refertilisation of the depleted mantle wedge, ultimately reflecting slab dehydration. Hence, adakites have significantly lower Pb/Nd and B/Be but higher Nb/Ta than typical arc magmas and continental crust as a whole. Although Li and Be are also overenriched in continental crust, behaviour of Li/Yb and Be/Nd is more complex and these ratios do not provide unique signatures of slab melting. Archaean tonalite-trondhjemite-granodiorites (TTGs) strongly resemble ordinary mantle wedge-derived arc magmas in terms of fluid-mobile trace element content, implying that they-did not form by slab melting but that they originated from mantle which was hydrated and enriched in elements lost from slabs during prograde dehydration. We suggest that Archaean TTGs formed by extensive fractional crystallisation from a mafic precursor. It is widely claimed that the time between the creation and subduction of oceanic lithosphere was significantly shorter in the Archaean (i.e. 20 Ma) than it is today. This difference was seen as an attractive explanation for the presumed preponderance of adakitic magmas during the first half of Earth's history. However, when we consider the effects of a higher potential mantle temperature on the thickness of oceanic crust, it follows that the mean age of oceanic lithosphere has remained virtually constant. Formation of adakites has therefore always depended on local plate geometry and not on potential mantle temperature.
Resumo:
There exists a major cost issue as regards termite damage to wooden structures. A factor in this cost has been the increasing trend towards slab-on-ground construction. Current literature has been reviewed in relation to concerns about the possible public/environmental health consequences of the repeated use of termiticides in large quantities. The previous, current and projected future use patterns of termiticides are reviewed in the context of techniques appropriate for termite control and treatment priorities. The phasing out of organochlorine termiticides in Australia was undertaken to minimise impact of these substances on the environment and to a lesser extent on public health. These persistent chemicals were replaced by substances with high activity but relatively low persistence in the soil. There has also been an increase in the use of alternative methods (e.g. physical barriers) for the control of termites. The transition away from organochlorine termiticides has led to a realisation that significant information gaps exist with regard to replacement chemicals and other technologies. Although relatively persistent, the organochlorine chemicals have a limited lifespan in soils. Their concentrations are gradually attenuated by processes such as transport away from the point of application and biodegradation. Wooden structures originally treated with these substances will, with the passing of time, be at risk of termite infestation. The only available option is re-treatment with chemicals currently registered for termite control. Thus, there are likely to be substantial future increases associated with the cost of re-treatment and repairs of older slab-on-ground dwellings. More information is required on Australian termite biology, taxonomy and ecology. The risks of termite infestation need to be evaluated, both locally and nationally so that susceptible or high risk areas, structures and building types can be identified and preventive measures taken in terms of design and construction. Building regulations and designs need to be able to reduce or eliminate high-risk housing; and eliminate or reduce conditions that are attractive to termites and/or facilitate termite infestation.
Resumo:
The flat plate system is currently widely used in construction. It permits architectural flexibility, more clear space, less building height, easier formwork, and shorter construction time. However, there remains the problem of brittle punching failure due to the transfer of shearing forces and unbalanced moments at the flat plate-column connection. It is the purpose of this paper to investigate the effects of various interdependent factors that govern the punching shear resistance and behaviour of the flat plate-column connection, as well as their inclusion in current Codes.
Resumo:
A general, fast wavelet-based adaptive collocation method is formulated for heat and mass transfer problems involving a steep moving profile of the dependent variable. The technique of grid adaptation is based on sparse point representation (SPR). The method is applied and tested for the case of a gas–solid non-catalytic reaction in a porous solid at high Thiele modulus. Accurate and convergent steep profiles are obtained for Thiele modulus as large as 100 for the case of slab and found to match the analytical solution.
Resumo:
An approximate analytical technique employing a finite integral transform is developed to solve the reaction diffusion problem with Michaelis-Menten kinetics in a solid of general shape. A simple infinite series solution for the substrate concentration is obtained as a function of the Thiele modulus, modified Sherwood number, and Michaelis constant. An iteration scheme is developed to bring the approximate solution closer to the exact solution. Comparison with the known exact solutions for slab geometry (quadrature) and numerically exact solutions for spherical geometry (orthogonal collocation) shows excellent agreement for all values of the Thiele modulus and Michaelis constant.
Resumo:
Erluanbi is the most southern tip of Taiwan (Formosa) where the Taiwan (Formosa) Strait meets the Pacific Ocean. The Erluanbi national park is renown for its lighthouse, and its coral reef, and it hosts also some prehistoric sites bating back to 5,000 to 6,500 years. The Erluanbi (or Eluan Pi) lighthouse was completed in 1883, following requests from the American and Japanese governments to the Chinese government after several ship wrecks in the 1860s. Chinese troops were sent to protect the lighthouse construction from attacks by local tribesmen, and the lighthouse was surrounded a small fort with cannons and a ditch to protect it. It is a rare example of a fortified lighthouse in the world. The lighthouse itself is 21.4 m high and its light is 56.4 m above high water. The light flashes every 10 seconds and its range is 27.2 nautical miles. The surrounding Erluanbi national park is located on a raised coral reef with some huge fringing reef : e.g., the "sea pavillon". With the topical oceanic climate, the elevated reef hosts an unique vegetation and ecology. Since 1956, numerous prehistoric artefacts were uncovered including stone slab coffins and pottery (plain and painted), that encompassed at least four cultural stages from BC 4,500 to AD 800.
Resumo:
Molecular dynamics simulations of carbon atom depositions are used to investigate energy diffusion from the impact zone. A modified Stillinger-Weber potential models the carbon interactions for both sp2 and sp3 bonding. Simulations were performed on 50 eV carbon atom depositions onto the (111) surface of a 3.8 x 3.4 x 1.0 nm diamond slab containing 2816 atoms in 11 layers of 256 atoms each. The bottom layer was thermostated to 300 K. At every 100th simulation time step (27 fs), the average local kinetic energy, and hence local temperature, is calculated. To do this the substrate is divided into a set of 15 concentric hemispherical zones, each of thickness one atomic diameter (0.14 nm) and centered on the impact point. A 50-eV incident atom heats the local impact zone above 10 000 K. After the initial large transient (200 fs) the impact zone has cooled below 3000 K, then near 1000 K by 1 ps. Thereafter the temperature profile decays approximately as described by diffusion theory, perturbed by atomic scale fluctuations. A continuum model of classical energy transfer is provided by the traditional thermal diffusion equation. The results show that continuum diffusion theory describes well energy diffusion in low energy atomic deposition processes, at distance and time scales larger than 1.5 nm and 1-2 ps, beyond which the energy decays essentially exponentially. (C) 1998 Published by Elsevier Science S.A. All rights reserved.
Resumo:
The abundance and species richness of mollusc and crab assemblages were examined in a subtropical mangrove forest in Moreton Bay, Queensland, Australia, which has been disturbed and damaged by the construction of a wooden boardwalk and a path. Sections of the forest immediately adjacent to the boardwalk and path were compared with reference areas to determine whether changes to the small-scale structural complexity within the forest affected the benthic fauna. The disturbed area was characterised by having 65-80% fewer pneumatophores, significantly fewer species and individuals of molluscs, but significantly more species and individuals of crabs than the reference areas. The abundance of mangrove pneumatophores and the attached epiphytic algae were manipulated at two sites to determine whether observed differences in these features could account for the differences in the assemblage of molluscs in the disturbed area of the forest compared with reference areas. Five experimental treatments were used: undisturbed controls, pneumatophore removals (abundance reduced by ca. 65%), epiphytic algal removals (algae removed from ca. 65% of pneumatophores), pneumatophore disturbance controls and algal disturbance controls. The experimental reduction of the abundance of mangrove pneumatophores and the associated epiphytic algae led to significant declines (by as much as 83%) in the number of molluscs utilising the substratum in the modified plots. There was no significant difference in the abundance of molluscs in the pneumatophore and algal removal plots suggesting any effect was primarily related to removal of the epiphytic algae from the surface of the pneumatophores. The responses by the biota to the changes in the physical environment demonstrate that even relatively small-scale modifications to the physical structure of subtropical mangrove forests can lead to significant effects on the diversity and abundance of macrobenthic organisms in these habitats. Such modifications have the potential to cause cascading effects at higher trophic levels with a deterioration in the value of these habitats as nursery and feeding grounds. Future efforts at conservation of these estuarine environments must focus on the prevention or reduction of modifications to the physical structure and integrity of the system, rather than just on the prevention of loss of entire patches of habitat. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
In this paper, genetic algorithm (GA) is applied to the optimum design of reinforced concrete liquid retaining structures, which comprise three discrete design variables, including slab thickness, reinforcement diameter and reinforcement spacing. GA, being a search technique based on the mechanics of natural genetics, couples a Darwinian survival-of-the-fittest principle with a random yet structured information exchange amongst a population of artificial chromosomes. As a first step, a penalty-based strategy is entailed to transform the constrained design problem into an unconstrained problem, which is appropriate for GA application. A numerical example is then used to demonstrate strength and capability of the GA in this domain problem. It is shown that, only after the exploration of a minute portion of the search space, near-optimal solutions are obtained at an extremely converging speed. The method can be extended to application of even more complex optimization problems in other domains.
Resumo:
Reconstruction of the evolution of the Tyrrhenian Sea shows that the major stage of rifting associated with the opening of this basin began at similar to10 Ma. It involved two episodes of back arc extension, which were induced by the rollback of a west dipping subducting slab. The first period of extension (10-6 Ma) was prominent in the northern Tyrrhenian Sea and in the western part of the southern Tyrrhenian Sea. The second period of extension, mainly affected the southern Tyrrhenian Sea, began in the latest Messinian (6-5 Ma) and has been accompanied by subduction rollback at rates of 60-100 km Myr(-1). Slab reconstruction, combined with paleomagnetic and paleogeographic constraints, indicates that in the central Apennines, the latest Messinian (6-5 Ma) arrival of a carbonate platform at the subduction zone impeded subduction and initiated a slab tear and major strike-slip faults. These processes resulted in the formation of a narrow subducting slab beneath the Ionian Sea that has undergone faster subduction rollback and induced extreme rates of back arc extension.