10 resultados para Wistar Rat
em University of Queensland eSpace - Australia
Resumo:
Objective: This study aimed to investigate how local pain relief is mediated by laser therapy and how dose affects the relationship. Methods: Inflammation was induced in the hind-paws of Wistar rats. Two groups of rats received 780-nm laser therapy (Spectra-Medics Pty Ltd.) at one of two doses (2.5 and 1 J/cm(2)). One group acted as a control. Scores of nociceptive threshold were recorded using paw pressure and paw thermal threshold measures. Results: A dose of 1 J/cm(2) had no statistically significant effect on antinociceptive responses. A dose of 2.5 J/cm(2) demonstrated a statistically significant effect on paw pressure threshold (p < 0.029) compared to controls. There was no difference in paw thermal threshold responses and paw volumes at either dose. Immunohistochemistry in control animals demonstrated normal beta-endorphin containing lymphocytes in control inflamed paws but no beta-endorphin containing lymphocytes in rats that received laser at 2.5 J/cm(2). Conclusion: The results confirm previous findings that the effect of laser therapy is dose-related. The mechanism of effect may occur via a differentiated pressure-sensitive neural pathway rather than a thermal-sensitive neural pathway. The significance of the immunohistochemistry findings remains unknown.
Resumo:
Valproic acid (VPA) is a major therapeutic agent in the treatment of epilepsy and other neurological disorders. It is metabolized in humans and rats primarily along two pathways: direct glucuronidation to yield the acyl glucuronide (VPA-G) and beta-oxidation. We have shown much earlier in the Sprague-Dawley rat that i.v. administration of sodium valproate (NaVPA) caused a marked choleresis ( mean of 3.3 times basal bile flow after doses of 150 mg/kg), ascribed to the passive osmotic flow of bile water following excretion of VPA-G across the canalicular membrane. Active biliary pumping of anionic drug conjugates across the canalicular membrane is now believed to be attributable to transporter proteins, in particular Mrp2, which is deficient in the TR- ( a mutant Wistar) rat. In the present study, normal Wistar and Mrp2-deficient TR- rats were dosed i.v. with NaVPA at 150 mg/kg. In the Wistar rats, there was a peak choleretic effect of about 3.2 times basal bile flow, occurring at about 30 to 45 min postdose ( as seen previously with Sprague-Dawley rats). In TR- rats given the same i.v. dose, there was no evidence of postdose choleresis. The choleresis was correlated with the excretion of VPA-G into bile. In Wistar rats, 62.8 +/- 7.7% of the NaVPA dose was excreted in bile as VPA-G, whereas in TR- rats, only 2.0 +/- 0.6% of the same dose was excreted as VPA-G in bile ( with partial compensatory excretion of VPA-G in urine). This study underlines the functional ( bile flow) consequences of biliary transport of xenobiotic conjugated metabolites.
Resumo:
Neonatal X-irradiation of central nervous system (CNS) tissue markedly reduces the glial population in the irradiated area. Previous in vivo studies have demonstrated regenerative success of adult dorsal root ganglion (DRG) neurons into the neonatally-irradiated spinal cord. The present study was undertaken to determine whether these results could be replicated in an in vitro environment. The lumbosacral spinal cord of anaesthetised Wistar rat pups, aged between 1 and 5 days, was subjected to a single dose (40 Gray) of X-irradiation. A sham-irradiated group acted as controls. Rats were allowed to reach adulthood before being killed. Their lumbosacral spinal cords were dissected out and processed for sectioning in a cryostat. Cryosections (10 mum-thick) of the spinal cord tissue were picked up on sterile glass coverslips and used as substrates for culturing dissociated adult DRG neurons. After an appropriate incubation period, cultures were fixed in 2% paraformaldehyde and immunolabelled to visualise both the spinal cord substrate using anti-glial fibrillary acidic protein (GFAP) and the growing DRG neurons using anti-growth associated protein (GAP-43). Successful growth of DRG neurites was observed on irradiated, but not on non-irradiated, sections of spinal cord. Thus, neonatal X-irradiation of spinal cord tissue appears to alter its environment such that it can later support, rather than inhibit, axonal regeneration. It is suggested that this alteration may be due, at least in part, to depletion in the number of and/or a change in the characteristics of the glial cells. (C) 2000 ISDN. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
1. The natriuretic peptide precursor A (Nppa) and B (Nppb) genes are candidate genes for hypertension and cardiac hypertrophy in the spontaneously hypertensive rat (SHR). The purpose of the present study was to determine the role of the Nppa and Nppb genes in the development of hypertension in the SHR. 2. A cohort (n = 162) of F2 segregating intercross animals was established between strains of hypertensive SHR and normotensive Wistar-Kyoto rats. Blood pressure and heart weight were measured in each rat at 12-16 weeks of age. Rats were genotyped using 11 informative microsatellite markers, distributed in the vicinity of the Nppa marker on rat chromosome 5 including an Nppb marker. The phenotype values were compared with genotype using the computer package MAP-MAKER 3.0 (Whitehead Institute, Boston, MA, USA) to determine whether there was a link between the genetic variants of the natriuretic peptide family and blood pressure or cardiac hypertrophy. 3. A strong correlation was observed between the Nppa marker and blood pressure. A quantitative trait locus (QTL) for blood pressure on chromosome 5 was identified between the Nppa locus and the D5Mgh15 marker, less than 2 cM from the Nppa locus. The linkage score for the blood pressure QTL on chromosome 5 was 3.8 and the QTL accounted for 43% of the total variance of systolic blood pressure, 54% of diastolic blood pressure and 59% of mean blood pressure. No association was found between the Nppb gene and blood pressure. This is the first report of linkage between the Nppa marker and blood pressure in the rat. There was no correlation between the Nppa or Nppb genes or other markers in this region and either heart weight or left ventricular weight in F2 rats. 4. These findings suggest the existence of a blood pressure-dependent Nppa marker variant or a gene close to Nppa predisposing to spontaneous hypertension in the rat. It provides a strong foundation for further detailed genetic studies in congenic strains, which may help to narrow down the location of this gene and lead to positional cloning.
Resumo:
Recent investigations have implicated the medial prefrontal cortex (mPFC) in modulation of subcortical pathways that contribute to the generation of behavioural, autonomic and endocrine responses to stress. However, little is known of the mechanisms involved. One of the key neurotransmitters involved in mPFC function is dopamine, and we therefore aimed, in this investigation, to examine the role of mPFC dopamine in response to stress in Wistar rats. In this regard, we infused dopamine antagonists SCH23390 or sulpiride into the mPFC via retrodialysis. We then examined changes in numbers of cells expressing the c-fos immediate-early gene protein product, Fos, in subcortical neuronal populations associated with regulation of hypothalamic-pituitary-adrenal (HPA) axis stress responses in response to either of two stressors; systemic injection of interleukin-1beta, or air puff. The D-1 antagonist, SCH23390, and the D-2 antagonist, sulpiride, both attenuated expression of Fos in the medial parvocellular hypothalamic paraventricular nucleus (mpPVN) corticotropin-releasing factor cells at the apex of the HPA axis, as well as in most extra-hypothalamic brain regions examined in response to interleukin-1beta. By contrast, SCH23390 failed to affect Fos expression in response to air puff in any brain region examined, while sulpiride resulted in an attenuation of the air puff-induced response in only the mpPVN and the bed nucleus of the stria terminalis. These results indicate that the mPFC differentially processes the response to different stressors and that the two types of dopamine receptor may have different roles.
Resumo:
The action of alcohol on neuronal pathways has been an issue of increasing research focus, with numerous findings contradicting the previously accepted idea that its effect is nonspecific. The human NP22 (hNP22) gene was revealed by its elevated expression in the frontal cortex of the human alcoholic. The sequences of hNP22 and the rat orthologue rNP22 contain a number of domains consistent with those of cytoskeletal-interacting proteins. Localization of rNP22 is restricted to the cytoplasm and processes of neurons and it colocalizes with elements of the microfilament and microtubule matrices including filamentous actin (F-actin), alpha-tubulin, tau, and microtubule-associated protein 2 (MAP2). Withdrawal of Wistar rats after alcohol dependence induced by alcohol vapor produced elevated levels of rNP22 mRNA and protein in the cortex, CA2, and dentate gyrus regions of the hippocampus. In contrast, there was decreased rNP22 expression in the striatum after chronic ethanol exposure. Chronic ethanol exposure did not markedly alter rNP22 colocalization with F-actin, alpha-tubulin, or MAP2, although colocalization at the periphery of the neuronal soma with F-actin was observed only after chronic ethanol exposure and withdrawal. Rat NP22 colocalization with MAP2 was reduced during withdrawal, whereas association with alpha-tubulin and actin was maintained. These findings suggest that the effect of chronic ethanol exposure and withdrawal on rNP22 expression is region selective. Rat NP22 may affect microtubule or microfilament function, thereby regulating the neuroplastic changes associated with the development of alcohol dependence and physical withdrawal.
Resumo:
The purpose of the present study was to determine antipsychotic doses that achieve 80% striatal doparnine D-2-receptor occupancy for haloperidol, risperidone and olanzapine in rats. Wistar rats were treated with normal saline vehicle (controls), haloperidol (0.25 and 0.5 mg/kg/ day), risperidone (3, 5 and 6 mg/kg/day) and olanzapine (5 and 10 mg/kg/day) for 7 days via osmotic minipumps. Striatal and cerebellar tissue were collected and in vivo dopamine D2-receptor occupancies were determined using H-3-raclopride. The doses required to achieve dopamine D-2-receptor occupancy of 80% in 11- and 24-week old rats were: haloperidol 0.25 mg/kg/day, risperidone 5 mg/kg/day and olanzapine 10 mg/kg/day. (c) 2006 Elsevier B.V All rights reserved.
Resumo:
We measured the effects of ethanol on glutamate receptor levels in the hippocampus of neonatal Wistar rats using a vapor chamber model. Two control groups were used; a normal suckle group and a maternal separation group. Levels of NMDA receptors were not significantly altered in ethanol-treated animals compared to the normal suckle control group, as shown by [H-3]MK-801 binding and Western blot analysis. However, MK-801 binding and NR1 subunit immunoreactivity were greatly reduced in the hippocampus of separation control animals. Neither ethanol treatment nor maternal separation altered levels of GluR1 or GluR2(4). These results have serious implications for the importance of maternal contact for normal brain development.
Resumo:
Sensory transduction in the mammalian cochlea requires the maintenance of specialized fluid compartments with distinct ionic compositions. This is achieved by the concerted action of diverse ion channels and transporters, some of which can interact with the PDZ scaffolds, Na+-H+ exchanger regulatory factors 1 and 2 (NHERF-1, NHERF-2). Here, we report that NHERF-1 and NHERF-2 are widely expressed in the rat cochlea, and that their expression is developmentally regulated. Reverse transcription/polymerase chain reaction (RT-PCR) and Western blotting initially confirmed the RNA and protein expression of NHERFs. We then performed immunohistochemistry on cochlea during various stages of postnatal development. Prior to the onset of hearing (P8), NHERF-1 immunolabeling was prominently polarized to the apical membrane of cells lining the endolymphatic compartment, including the stereocilia and cuticular plates of the inner and outer hair cells, marginal cells of the stria vascularis, Reissner's epithelia, and tectorial membrane. With maturation (P21, P70), NHERF-1 immunolabeling was reduced in the above structures, whereas labeling increased in the apical membrane of the interdental cells of the spiral limbus and the inner and outer sulcus cells, Hensen's cells, the inner and outer pillar cells, Deiters cells, the inner border cells, spiral ligament fibrocytes, and spiral ganglion neurons (particularly type II). NHERF-1 expression in strial basal and intermediate cells was persistent. NHERF-2 immunolabeling was similar to that for NHERF-1 during postnatal development, with the exception of expression in the synaptic regions beneath the outer hair cells. NHERF-1 and NHERF-2 co-localized with glial fibrillary acidic protein and vimentin in glia. The cochlear localization of NHERF scaffolds suggests that they play important roles in the developmental regulation of ion transport, homeostasis, and auditory neurotransmission.