11 resultados para Wireless network
em University of Queensland eSpace - Australia
Resumo:
Wireless Mesh Networks (WMNs), based on commodity hardware, present a promising technology for a wide range of applications due to their self-configuring and self-healing capabilities, as well as their low equipment and deployment costs. One of the key challenges that WMN technology faces is the limited capacity and scalability due to co-channel interference, which is typical for multi-hop wireless networks. A simple and relatively low-cost approach to address this problem is the use of multiple wireless network interfaces (radios) per node. Operating the radios on distinct orthogonal channels permits effective use of the frequency spectrum, thereby, reducing interference and contention. In this paper, we evaluate the performance of the multi-radio Ad-hoc On-demand Distance Vector (AODV) routing protocol with a specific focus on hybrid WMNs. Our simulation results show that under high mobility and traffic load conditions, multi-radio AODV offers superior performance as compared to its single-radio counterpart. We believe that multi-radio AODV is a promising candidate for WMNs, which need to service a large number of mobile clients with low latency and high bandwidth requirements.
Resumo:
A specialised reconfigurable architecture is targeted at wireless base-band processing. It is built to cater for multiple wireless standards. It has lower power consumption than the processor-based solution. It can be scaled to run in parallel for processing multiple channels. Test resources are embedded on the architecture and testing strategies are included. This architecture is functionally partitioned according to the common operations found in wireless standards, such as CRC error correction, convolution and interleaving. These modules are linked via Virtual Wire Hardware modules and route-through switch matrices. Data can be processed in any order through this interconnect structure. Virtual Wire ensures the same flexibility as normal interconnects, but the area occupied and the number of switches needed is reduced. The testing algorithm scans all possible paths within the interconnection network exhaustively and searches for faults in the processing modules. The testing algorithm starts by scanning the externally addressable memory space and testing the master controller. The controller then tests every switch in the route-through switch matrix by making loops from the shared memory to each of the switches. The local switch matrix is also tested in the same way. Next the local memory is scanned. Finally, pre-defined test vectors are loaded into local memory to check the processing modules. This paper compares various base-band processing solutions. It describes the proposed platform and its implementation. It outlines the test resources and algorithm. It concludes with the mapping of Bluetooth and GSM base-band onto the platform.
Resumo:
The design of dual-band 2.45/5.2 GHz antenna for an acces point of a Wireless Local Area Network (LAN) is presented. The proposed antenna is formed by a Radial Line Slot Array (RLSA) operating at 2.4 GHz and a Microstrip patch working at 5.2 GHz, both featuring circular polarization. The design of this antenna system is accomplished using commercially available Finite Element software. High Frequency Structure Simulator (HFSS) of Ansoft and an in-house developed iteration procedure. The performance of the designed antenna is assessed in terms of return loss (RL), radiation pattern and polarization purity in the two frequency bands.
Resumo:
A variety of current and future wired and wireless networking technologies can be transformed into a seamless communication environments through application of context-based vertical handovers. Such seamless communication environments are needed for future pervasive/ubiquitous systems. Pervasive systems are context aware and need to adapt to context changes, including network disconnections and changes in network Quality of Service (QoS). Vertical handover is one of many possible adaptation methods. It allows users to roam freely between heterogeneous networks while maintaining the continuity of their applications. This paper proposes a vertical handover mechanism suitable for multimedia applications in pervasive systems. The paper focuses on the handover decision making process which uses context information regarding user devices, user location, network environment and requested QoS. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Infrastructureless networks are becoming more popular with the increased prevalence of wireless networking technology. A significant challenge faced by these infrastructureless networks is that of providing security. In this paper we examine the issue of authentication, a fundamental component of most security approaches, and show how it can be performed despite an absence of trusted infrastructure and limited or no existing trust relationship between network nodes. Our approach enables nodes to authenticate using a combination of contextual information, harvested from the environment, and traditional authentication factors (such as public key cryptography). Underlying our solution is a generic threshold signature scheme that enables distributed generation of digital certificates.