9 resultados para Winner’s Curse

em University of Queensland eSpace - Australia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This essay is about two threats to society. One is to the environment that, if unattended, will endanger our way of life. The other is to constitutional government and to the economy that arises from ill-advised responses to the challenges of environmental protection. The latter threat, if unaddressed, will not only endanger our way of life by diminishing freedom and prosperity but, in the end, will also defeat our good intentions about the environment. [Executive summary extract]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The notorious "dimensionality curse" is a well-known phenomenon for any multi-dimensional indexes attempting to scale up to high dimensions. One well-known approach to overcome degradation in performance with respect to increasing dimensions is to reduce the dimensionality of the original dataset before constructing the index. However, identifying the correlation among the dimensions and effectively reducing them are challenging tasks. In this paper, we present an adaptive Multi-level Mahalanobis-based Dimensionality Reduction (MMDR) technique for high-dimensional indexing. Our MMDR technique has four notable features compared to existing methods. First, it discovers elliptical clusters for more effective dimensionality reduction by using only the low-dimensional subspaces. Second, data points in the different axis systems are indexed using a single B+-tree. Third, our technique is highly scalable in terms of data size and dimension. Finally, it is also dynamic and adaptive to insertions. An extensive performance study was conducted using both real and synthetic datasets, and the results show that our technique not only achieves higher precision, but also enables queries to be processed efficiently. Copyright Springer-Verlag 2005

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we present a novel indexing technique called Multi-scale Similarity Indexing (MSI) to index image's multi-features into a single one-dimensional structure. Both for text and visual feature spaces, the similarity between a point and a local partition's center in individual space is used as the indexing key, where similarity values in different features are distinguished by different scale. Then a single indexing tree can be built on these keys. Based on the property that relevant images have similar similarity values from the center of the same local partition in any feature space, certain number of irrelevant images can be fast pruned based on the triangle inequity on indexing keys. To remove the dimensionality curse existing in high dimensional structure, we propose a new technique called Local Bit Stream (LBS). LBS transforms image's text and visual feature representations into simple, uniform and effective bit stream (BS) representations based on local partition's center. Such BS representations are small in size and fast for comparison since only bit operation are involved. By comparing common bits existing in two BSs, most of irrelevant images can be immediately filtered. To effectively integrate multi-features, we also investigated the following evidence combination techniques-Certainty Factor, Dempster Shafer Theory, Compound Probability, and Linear Combination. Our extensive experiment showed that single one-dimensional index on multi-features improves multi-indices on multi-features greatly. Our LBS method outperforms sequential scan on high dimensional space by an order of magnitude. And Certainty Factor and Dempster Shafer Theory perform best in combining multiple similarities from corresponding multiple features.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

One of the most pressing issues facing the global conservation community is how to distribute limited resources between regions identified as priorities for biodiversity conservation(1-3). Approaches such as biodiversity hotspots(4), endemic bird areas(5) and ecoregions(6) are used by international organizations to prioritize conservation efforts globally(7). Although identifying priority regions is an important first step in solving this problem, it does not indicate how limited resources should be allocated between regions. Here we formulate how to allocate optimally conservation resources between regions identified as priorities for conservation - the 'conservation resource allocation problem'. Stochastic dynamic programming is used to find the optimal schedule of resource allocation for small problems but is intractable for large problems owing to the curse of dimensionality(8). We identify two easy- to- use and easy- to- interpret heuristics that closely approximate the optimal solution. We also show the importance of both correctly formulating the problem and using information on how investment returns change through time. Our conservation resource allocation approach can be applied at any spatial scale. We demonstrate the approach with an example of optimal resource allocation among five priority regions in Wallacea and Sundaland, the transition zone between Asia and Australasia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

1. We examined the effect of thermal acclimation on fighting success and underlying performance traits in the crayfish Cherax destructor. We tested the hypothesis that animals will be more successful when fighting at their acclimation temperature than at a colder or warmer temperature, and that changes in metabolic capacity underlie differences in behavioural performance. 2. Thermal acclimation (to 20 degrees C and to 30 degrees C) had a significant effect on behavioural contests, and the likelihood of winning was significantly greater when individuals fought at their acclimation temperature against an individual from an alternate acclimation temperature. 3. The ratio of ADP stimulated respiration to proton leak (respiratory control ratio) of isolated mitochondria increased significantly in chelae muscle of the cold-acclimated group, and differences in respiratory control ratio between winners and losers were significantly correlated with the outcome of agonistic encounters. However, acclimation did not affect tall muscle mitochondria or the activity of pyruvate kinase in either chelae or tail muscle. 4. The force produced by closing chelae was thermally insensitive within acclimation groups, and there were no significant differences between acclimation treatments. None the less, differences in chelae width between contestants were significantly correlated with the outcome of agonistic encounters, but this perceived resource holding power did not reflect the actual power of force production. 5. Thermal acclimation in C destructor has beneficial consequences for dominance and competitive ability, and the success of cold acclimated animals at the cold temperatures can be at least partly explained by concomitant up-regulation of oxidative ATP production capacity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Indexing high dimensional datasets has attracted extensive attention from many researchers in the last decade. Since R-tree type of index structures are known as suffering curse of dimensionality problems, Pyramid-tree type of index structures, which are based on the B-tree, have been proposed to break the curse of dimensionality. However, for high dimensional data, the number of pyramids is often insufficient to discriminate data points when the number of dimensions is high. Its effectiveness degrades dramatically with the increase of dimensionality. In this paper, we focus on one particular issue of curse of dimensionality; that is, the surface of a hypercube in a high dimensional space approaches 100% of the total hypercube volume when the number of dimensions approaches infinite. We propose a new indexing method based on the surface of dimensionality. We prove that the Pyramid tree technology is a special case of our method. The results of our experiments demonstrate clear priority of our novel method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Conventionally, document classification researches focus on improving the learning capabilities of classifiers. Nevertheless, according to our observation, the effectiveness of classification is limited by the suitability of document representation. Intuitively, the more features that are used in representation, the more comprehensive that documents are represented. However, if a representation contains too many irrelevant features, the classifier would suffer from not only the curse of high dimensionality, but also overfitting. To address this problem of suitableness of document representations, we present a classifier-independent approach to measure the effectiveness of document representations. Our approach utilises a labelled document corpus to estimate the distribution of documents in the feature space. By looking through documents in this way, we can clearly identify the contributions made by different features toward the document classification. Some experiments have been performed to show how the effectiveness is evaluated. Our approach can be used as a tool to assist feature selection, dimensionality reduction and document classification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Music similarity query based on acoustic content is becoming important with the ever-increasing growth of the music information from emerging applications such as digital libraries and WWW. However, relative techniques are still in their infancy and much less than satisfactory. In this paper, we present a novel index structure, called Composite Feature tree, CF-tree, to facilitate efficient content-based music search adopting multiple musical features. Before constructing the tree structure, we use PCA to transform the extracted features into a new space sorted by the importance of acoustic features. The CF-tree is a balanced multi-way tree structure where each level represents the data space at different dimensionalities. The PCA transformed data and reduced dimensions in the upper levels can alleviate suffering from dimensionality curse. To accurately mimic human perception, an extension, named CF+-tree, is proposed, which further applies multivariable regression to determine the weight of each individual feature. We conduct extensive experiments to evaluate the proposed structures against state-of-art techniques. The experimental results demonstrate superiority of our technique.