3 resultados para Wind-blown dust

em University of Queensland eSpace - Australia


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Results from 2 years of dust deposition monitoring in a 10-year-old Pinus nigra plantation near Lake Tekapo are presented. They show that recently established plantations significantly enhance dust deposition rates. This could reverse a cycle of soil loss and enhance vertical accretion of soil, which would provide more options for future land use. However, observations indicate that even under such enhanced conditions for soil formation, it would take several thousand years to replace the soil lost to erosion since European farming practices were first introduced to the northern section of the Mackenzie Basin.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A 35 year chronology from 1965 to 2000 of the deposition of wind-blown sediment is constructed from snowpits for coastal southern Victoria Land, Antarctica. Analysis of local meteorology, contemporary eolian sedimentation, and mineralogy confirm a Victoria Valley provenance, while the presence of volcanic tephra is ascribed to an Erebus volcanic province source. Winter foelm winds associated with anticyclonic circulation are considered responsible for transporting fine-grained sediment from the snow- and ice-free Victoria Valley east toward the coast, while cyclonic storms transport tephra north along the Scott Coast. No trend could be identified in the occurrence of either tephra or wind-blown sediments sourced from the Victoria Valley and retrieved from the snowpits; excavated on the Victoria Lower and Wilson Piedmont Glaciers. We infer this to indicate that the region has not undergone a significant change in weather patterns for at least the last 35 years. Our results also confirm the McMurdo Dry Valleys as a regionally significant source of wind-blown sediment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present AUSLEM (AUStralian Land Erodibility Model), a land erodibility modelling system that utilizes a rule-set of surficial and climatic thresholds applied through a Geographic Information System (GIs) modelling framework to predict landscape susceptibility to wind erosion. AUSLEM is distinctive in that it quantitatively assesses landscape susceptibility to wind erosion at a 5 x 5 km. spatial resolution on a monthly time-step across Australia. The system was implemented for representative wet (1984), dry (1994), and average rainfall (1997) years with corresponding low, high and moderate dust storm day frequencies. Results demonstrate that AUSLEM can identify landscape erodibility, and provide an interpretation of the physical nature and distribution of erodible landscapes in Australia. Further, results offer an assessment of the dynamic tendencies of erodibility in space and time in response to the El Nino Southern Oscillation (ENSO) and seasonal synoptic scale climate variability. A comparative analysis of AUSLEM output with independent national and international wind erosion, atmospheric aerosol and dust event records indicates a high level of model competency. (c) 2006 Elsevier B.V. All rights reserved.