14 resultados para Wind tunnel tests

em University of Queensland eSpace - Australia


Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Three-dimensional computer modelling techniques are being used to develop a probabilistic model of turbulence-related spray transport around various plant architectures to investigate the influence of plant architectures and crop geometry on the sprayapplication process. Plant architecture models that utilise a set of growth rules expressed in the Lindenmayer systems (L-systems) formalism have been developed and programmed using L-studio software. Modules have been added to simulate the movement ofdroplets through the air and deposition on the plant canopy. Deposition of spray on an artificial plant structure was measured in the wind tunnel at the University of Queensland, Gatton campus and the results compared to the model simulation. Further trials are planned to measure the deposition of spray droplets on various crop and weed species and the results from these trials will be used to refine and validate the combined spray and plant architecture model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Floral volatiles play a major role in plant-insect communication. We examined the influence of two volatiles, phenylacetaldehyde and a-pinene, on the innate and learnt foraging behaviour of the moth Helicoverpa armigera. In dual-choice wind tunnel tests, adult moths flew upwind towards both volatiles, with a preference for phenylacetaldehyde. When exposure to either of these volatiles was paired with a feeding stimulus (sucrose), all moths preferred the learnt odour in the preference test. This change in preference was not seen when moths were exposed to the odour without a feeding stimulus. The learnt preference for the odour was reduced when moths were left unfed for 24 h before the preference test. We tested whether moths could discriminate between flowers that differed in a single volatile component. Moths were trained to feed on flowers that were odour-enhanced using either phenylacetaldehyde or a-pinene. Choice tests were then carried out in an outdoor flight cage, using flowers enhanced with either volatile. Moths showed a significant preference for the flower type on which they were trained. Moths that were conditioned on flowers that were not odour-enhanced showed no preference for either of the odour-enhanced flower types. The results imply that moths may be discriminating among odour profiles of individual flowers from the same species. We discuss this behaviour within the context of nectar foraging in moths and odour signalling by flowering plants.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The development of new methods of producing hypersonic wind-tunnel flows at increasing velocities during the last few decades is reviewed with attention to airbreathing propulsion, hypervelocity aerodynamics and superorbital aerodynamics. The role of chemical reactions in these flows leads to use of a binary scaling simulation parameter, which can be related to the Reynolds number, and which demands that smaller wind tunnels require higher reservoir pressure levels for simulation of flight phenomena. The use of combustion heated vitiated wind tunnels for propulsive research is discussed, as well as the use of reflected shock tunnels for the same purpose. A flight experiment validating shock-tunnel results is described, and relevant developments in shock tunnel instrumentation are outlined. The use of shock tunnels for hypervelocity testing is reviewed, noting the role of driver gas contamination in determining test time, and presenting examples of air dissociation effects on model flows. Extending the hypervelocity testing range into the superorbital regime with useful test times is seen to be possible by use of expansion tube/tunnels with a free piston driver.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Wind tunnel measurements of drop Size distributions from Micronair A U4000 and A U5000 rotary atomizers were collected to develop a database for model use. The measurements varied tank mix, flow rate, air speed, and blade angle conditions, which were correlated by multiple regressions (average R-2 = 0.995 for A U4000 and 0.988 for AU5000). This database replaces an outdated set of rotary atomizer data measured in the 1980s by the USDA Forest Service and fills in a gap in data measured in the 1990s by the Spray Drift Task Force. Since current USDA Forest Service spray projects rely on rotary atomizers, the creation of the database (and its multiple regression interpolation) satisfies a need seen for ten years.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Polyethylene-based passive air samplers (PSDs) were loaded with performance reference compounds (PRCs) and deployed in a wind tunnel to examine the effects of wind speed on sampler performance. PRCs could be loaded reproducibly into PSDs, with coefficients of variation only exceeding 20% for the more volatile compounds. When PSDs were exposed to low (0.5-1.5 m s(-1)) and high (3.5-4.5 m s(-1)) wind speeds, PRC loss rate constants generally increased with increasing wind speed and decreased with increasing sampler/air partition coefficients. PSD-based air concentrations calculated using PRC loss rate constants and sampler/air partition coefficients and air concentrations measured using active samplers compared closely. PRCs can be used to account for the effect of differences in wind speeds on sampler performance and measure air concentrations with reasonable accuracy. (c) 2006 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The development of scramjet propulsion for alternative launch and payload delivery capabilities has been composed largely of ground experiments for the last 40 years. With the goal of validating the use of short duration ground test facilities, a ballistic reentry vehicle experiment called HyShot was devised to achieve supersonic combustion in flight above Mach 7.5. It consisted of a double wedge intake and two back-to-back constant area combustors; one supplied with hydrogen fuel at an equivalence ratio of 0.34 and the other unfueled. Of the two flights conducted, HyShot 1 failed to reach the desired altitude due to booster failure, whereas HyShot 2 successfully accomplished both the desired trajectory and satisfactory scramjet operation. Postflight data analysis of HyShot 2 confirmed the presence of supersonic combustion during the approximately 3 s test window at altitudes between 35 and 29 km. Reasonable correlation between flight and some preflight shock tunnel tests was observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cold atoms in optical potentials provide an ideal test bed to explore quantum nonlinear dynamics. Atoms are prepared in a magneto-optic trap or as a dilute Bose-Einstein condensate and subjected to a far detuned optical standing wave that is modulated. They exhibit a wide range of dynamics, some of which can be explained by classical theory while other aspects show the underlying quantum nature of the system. The atoms have a mixed phase space containing regions of regular motion which appear as distinct peaks in the atomic momentum distribution embedded in a sea of chaos. The action of the atoms is of the order of Planck's constant, making quantum effects significant. This tutorial presents a detailed description of experiments measuring the evolution of atoms in time-dependent optical potentials. Experimental methods are developed providing means for the observation and selective loading of regions of regular motion. The dependence of the atomic dynamics on the system parameters is explored and distinct changes in the atomic momentum distribution are observed which are explained by the applicable quantum and classical theory. The observation of a bifurcation sequence is reported and explained using classical perturbation theory. Experimental methods for the accurate control of the momentum of an ensemble of atoms are developed. They use phase space resonances and chaotic transients providing novel ensemble atomic beamsplitters. The divergence between quantum and classical nonlinear dynamics is manifest in the experimental observation of dynamical tunnelling. It involves no potential barrier. However a constant of motion other than energy still forbids classically this quantum allowed motion. Atoms coherently tunnel back and forth between their initial state of oscillatory motion and the state 180 out of phase with the initial state.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To discuss the diagnosis and treatment of a patient with cubital tunnel syndrome and to illustrate novel treatment modalities for the ulnar nerve and its surrounding structures and target tissues. The rationale for the addition of nerve-gliding techniques will be highlighted. Clinical Features: Two months after onset, a 17-year-old female nursing student who had a traumatic onset of cubital tunnel syndrome still experienced pain around the elbow and paresthesia in the ulnar nerve distribution. Electrodiagnostic tests were negative. Segmental cervicothoracic motion dysfunctions were present which were regarded as contributing factors hindering natural recovery. Intervention and Outcomes: After 6 sessions consisting of nerve-gliding techniques and segmental joint manipulation and a home exercise program consisting of nerve gliding and light free-weight exercises, a substantial improvement was recorded on both the impairment and functional level (pain scales, clinical tests, and Northwick Park Questionnaire). Symptoms did not recur within a 10-month follow-up period, and pain and disability had completely resolved. Conclusions: Movement-based management may be beneficial in the conservative management of cubital tunnel syndrome. As this intervention is in contrast with the traditional recommendation of immobilization, comparing the effects of both interventions in a systematic way is an essential next step to determine the optimal treatment of patients with cubital tunnel syndrome.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lift, pitching moment, and thrust/drag on a supersonic combustion ramjet were measured in the T4 free-piston shock tunnel using a three-component stress-wave force balance. The scramjet model was 0.567 m long and weighed approximately 6 kg. Combustion occurred at a nozzle-supply enthalpy of 3.3 MJ/kg and nozzle-supply pressure of 32 MPa at Mach 6.6 for equivalence ratios up to 1.4. The force coefficients varied approximately linearly with equivalence ratio. The location of the center of pressure changed by 10% of the chord of the model over the range of equivalence ratios tested. Lift and pitching-moment coefficients remained constant when the nozzle-supply enthalpy was increased to 4.9 MJ/kg at an equivalence ratio of 0.8, but the thrust coefficient decreased rapidly. When the nozzle-supply pressure was reduced at a nozzle-supply enthalpy of 3.3 MJ/kg and an equivalence ratio of 0.8, the combustion-generated increment of lift and thrust was maintained at 26 MPa, but disappeared at 16 MPa. Measured lift and thrust forces agreed well with calculations made using a simplified force prediction model, but the measured pitching moment substantially exceeded predictions. Choking occurred at nozzle-supply enthalpies of less than 3.0 MJ/kg with an equivalence ratio of 0.8. The tests failed to yield a positive thrust because of the skin-friction drag that accounted for up to 50% of the fuel-off drag.